scholarly journals Coronavirus Disease 2019–COVID-19

2020 ◽  
Vol 33 (4) ◽  
Author(s):  
Kuldeep Dhama ◽  
Sharun Khan ◽  
Ruchi Tiwari ◽  
Shubhankar Sircar ◽  
Sudipta Bhat ◽  
...  

SUMMARY In recent decades, several new diseases have emerged in different geographical areas, with pathogens including Ebola virus, Zika virus, Nipah virus, and coronaviruses (CoVs). Recently, a new type of viral infection emerged in Wuhan City, China, and initial genomic sequencing data of this virus do not match with previously sequenced CoVs, suggesting a novel CoV strain (2019-nCoV), which has now been termed severe acute respiratory syndrome CoV-2 (SARS-CoV-2). Although coronavirus disease 2019 (COVID-19) is suspected to originate from an animal host (zoonotic origin) followed by human-to-human transmission, the possibility of other routes should not be ruled out. Compared to diseases caused by previously known human CoVs, COVID-19 shows less severe pathogenesis but higher transmission competence, as is evident from the continuously increasing number of confirmed cases globally. Compared to other emerging viruses, such as Ebola virus, avian H7N9, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 has shown relatively low pathogenicity and moderate transmissibility. Codon usage studies suggest that this novel virus has been transferred from an animal source, such as bats. Early diagnosis by real-time PCR and next-generation sequencing has facilitated the identification of the pathogen at an early stage. Since no antiviral drug or vaccine exists to treat or prevent SARS-CoV-2, potential therapeutic strategies that are currently being evaluated predominantly stem from previous experience with treating SARS-CoV, MERS-CoV, and other emerging viral diseases. In this review, we address epidemiological, diagnostic, clinical, and therapeutic aspects, including perspectives of vaccines and preventive measures that have already been globally recommended to counter this pandemic virus.

Author(s):  
Kuldeep Dhama ◽  
Khan Sharun ◽  
Ruchi Tiwari ◽  
Shubhankar Sircar ◽  
Sudipta Bhat ◽  
...  

In the past decades, several new diseases have emerged in new geographical areas, with pathogens including Ebola, Zika, Nipah, and coronaviruses (CoV). Recently, a new type of viral infection has emerged in Wuhan City, China, and initial genomic sequencing data of this virus does not match with previously sequenced CoVs, suggesting a novel CoV strain (2019-nCoV), which has now been termed as severe acute respiratory syndrome CoV-2 (SARS-CoV-2). Although CoV disease 2019 (COVID-19) is suspected to originate from an animal host (zoonotic origin) followed by human-to-human transmission, the possibility of other routes such as food-borne transmission should not be ruled out. Compared to diseases caused by previously known human CoVs, COVID-19 shows a less severe pathogenesis but higher transmission competence, as is evident from the continuously increasing number of confirmed cases. Compared to other emerging viruses such as Ebola virus, avian H7N9, SARS-CoV, or MERS-CoV, SARS-CoV-2 has shown relatively low pathogenicity and moderate transmissibility Codon usage studies suggest that this novel virus may have been transferred from an animal source such as bats. Early diagnosis by real-time PCR and next-generation sequencing has facilitated the identification of the pathogen at an early stage. Since no antiviral drug or vaccine exists to treat or prevent SARS-CoV-2, potential therapeutic strategies that are currently being evaluated predominantly stem from previous experience with treating SARS-CoV, MERS-CoV, and other emerging viral diseases. In this review, we address epidemiological, diagnostic, clinical, and therapeutic aspects, including perspectives of vaccines and preventive measures that have already been globally recommended.


Author(s):  
Kuldeep Dhama ◽  
Khan Sharun ◽  
Ruchi Tiwari ◽  
Shubhankar Sircar ◽  
Sudipta Bhat ◽  
...  

In the past decades, several new diseases have emerged in new geographical areas, with pathogens including Ebola, Zika, Nipah, and coronaviruses (CoVs). Recently, a new type of viral infection has emerged in Wuhan City, China, and initial genomic sequencing data of this virus does not match with previously sequenced CoVs, suggesting a novel CoV strain (2019-nCoV), which has now been termed as severe acute respiratory syndrome CoV-2 (SARS-CoV-2). Although Coronavirus disease 2019 (COVID-19) is suspected to originate from an animal host (zoonotic origin) followed by human-to-human transmission, the possibility of other routes such as food-borne transmission should not be ruled out. Compared to diseases caused by previously known human CoVs, COVID-19 shows less severe pathogenesis but higher transmission competence, as is evident from the continuously increasing number of confirmed cases globally. Compared to other emerging viruses such as Ebola virus, avian H7N9, SARS-CoV, or MERS-CoV, SARS-CoV-2 has shown relatively low pathogenicity and moderate transmissibility. Codon usage studies suggest that this novel virus may have been transferred from an animal source such as bats. Early diagnosis by real-time PCR and next-generation sequencing has facilitated the identification of the pathogen at an early stage. Since, no antiviral drug or vaccine exists to treat or prevent SARS-CoV-2, potential therapeutic strategies that are currently being evaluated predominantly stem from previous experience with treating SARS-CoV, MERS-CoV, and other emerging viral diseases. In this review, we address epidemiological, diagnostic, clinical, and therapeutic aspects, including perspectives of vaccines and preventive measures that have already been globally recommended.


Viruses ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 940 ◽  
Author(s):  
Seth D. Judson ◽  
Vincent J. Munster

Recent nosocomial transmission events of emerging and re-emerging viruses, including Ebola virus, Middle East respiratory syndrome coronavirus, Nipah virus, and Crimean–Congo hemorrhagic fever orthonairovirus, have highlighted the risk of nosocomial transmission of emerging viruses in health-care settings. In particular, concerns and precautions have increased regarding the use of aerosol-generating medical procedures when treating patients with such viral infections. In spite of increasing associations between aerosol-generating medical procedures and the nosocomial transmission of viruses, we still have a poor understanding of the risks of specific procedures and viruses. In order to identify which aerosol-generating medical procedures and emerging viruses pose a high risk to health-care workers, we explore the mechanisms of aerosol-generating medical procedures, as well as the transmission pathways and characteristics of highly pathogenic viruses associated with nosocomial transmission. We then propose how research, both in clinical and experimental settings, could advance current infection control guidelines.


Author(s):  
Iffah Anasia ◽  
Zulharmita Zulharmita ◽  
Ridho Asra

Remdesivir is the first drug that has been approved by the US Food and Drug Administration (FDA) for clinical use in hospitalized patients with COVID-19 disease. From several therapeutic options, Remdesivir is a direct-acting antiviral drug that has previously been tested against the Ebola virus, known to be effective and safe enough to inhibit the replication of SARS-CoV-2. Corona virus or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a virus that attacks the respiratory system in humans, this virus can cause mild disorders of the respiratory system, severe lung infections, and even death. Remdesivir is a broad-spectrum antiviral agent that has previously shown antiviral activity against filoviruses (Ebola and Marburg viruses), coronaviruses (SARS-CoV, MERS-CoV, SARS CoV-2), paramyxoviruses (type III influenza virus, Nipah virus, Hendra virus, measles, and mumps virus) and Pnemoviriidae (respiratory syncytial virus).


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 912
Author(s):  
Miray Tonk ◽  
Daniel Růžek ◽  
Andreas Vilcinskas

Multiple outbreaks of epidemic and pandemic viral diseases have occurred in the last 20 years, including those caused by Ebola virus, Zika virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The emergence or re-emergence of such diseases has revealed the deficiency in our pipeline for the discovery and development of antiviral drugs. One promising solution is the extensive library of antimicrobial peptides (AMPs) produced by all eukaryotic organisms. AMPs are widely known for their activity against bacteria, but many possess additional antifungal, antiparasitic, insecticidal, anticancer, or antiviral activities. AMPs could therefore be suitable as leads for the development of new peptide-based antiviral drugs. Sixty therapeutic peptides had been approved by the end of 2018, with at least another 150 in preclinical or clinical development. Peptides undergoing clinical trials include analogs, mimetics, and natural AMPs. The advantages of AMPs include novel mechanisms of action that hinder the evolution of resistance, low molecular weight, low toxicity toward human cells but high specificity and efficacy, the latter enhanced by the optimization of AMP sequences. In this opinion article, we summarize the evidence supporting the efficacy of antiviral AMPs and discuss their potential to treat emerging viral diseases including COVID-19.


Author(s):  
Venkata Niharika Daka ◽  
Lakshmi Sravanthi Bandi ◽  
Sushma Alla ◽  
Venkata Spandana Cheedella ◽  
Sadasiva Rao Galaba

Remdesivir is an investigational broad-spectrum small-molecule antiviral drug that has confirmed interest in the direction of RNA viruses in numerous families, which encompass Coronaviridae (alongside aspect SARS-CoV, MERS-CoV, and lines of bat coronaviruses able to infecting human respiratory epithelial cells), Paramyxoviridae (alongside aspect Nipah virus, respiratory syncytial virus, and Hendra virus), and Filoviridae (alongside aspect Ebola virus). Originally superior to cope with Ebola virus infection , remdesivir is a prodrug of the determine adenosine analog, each of which can be metabolized into an energetic nucleoside triphosphate (NTP) via the host. The determine nucleoside, GS-441524, has displayed antiviral interest within the direction of SARS-CoV, Marburg virus , and pussycat infectious peritonitis virus, amongst others. A fashion of research have tested the effects of these pills on coronaviruses (CoVs) each in vitro and in vivo the use of mouse and non-human primate animal models.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 907-912
Author(s):  
Deepika Masurkar ◽  
Priyanka Jaiswal

Recently at the end of 2019, a new disease was found in Wuhan, China. This disease was diagnosed to be caused by a new type of coronavirus and affected almost the whole world. Chinese researchers named this novel virus as 2019-nCov or Wuhan-coronavirus. However, to avoid misunderstanding the World Health Organization noises it as COVID-19 virus when interacting with the media COVID-19 is new globally as well as in India. This has disturbed peoples mind. There are various rumours about the coronavirus in Indian society which causes panic in peoples mind. It is the need of society to know myths and facts about coronavirus to reduce the panic and take the proper precautionary actions for our safety against the coronavirus. Thus this article aims to bust myths and present the facts to the common people. We need to verify myths spreading through social media and keep our self-ready with facts so that we can protect our self in a better way. People must prevent COVID 19 at a personal level. Appropriate action in individual communities and countries can benefit the entire world.


Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 64
Author(s):  
Jordana Muñoz-Basagoiti ◽  
Daniel Perez-Zsolt ◽  
Jorge Carrillo ◽  
Julià Blanco ◽  
Bonaventura Clotet ◽  
...  

Viruses rely on the cellular machinery to replicate and propagate within newly infected individuals. Thus, viral entry into the host cell sets up the stage for productive infection and disease progression. Different viruses exploit distinct cellular receptors for viral entry; however, numerous viral internalization mechanisms are shared by very diverse viral families. Such is the case of Ebola virus (EBOV), which belongs to the filoviridae family, and the recently emerged coronavirus SARS-CoV-2. These two highly pathogenic viruses can exploit very similar endocytic routes to productively infect target cells. This convergence has sped up the experimental assessment of clinical therapies against SARS-CoV-2 previously found to be effective for EBOV, and facilitated their expedited clinical testing. Here we review how the viral entry processes and subsequent replication and egress strategies of EBOV and SARS-CoV-2 can overlap, and how our previous knowledge on antivirals, antibodies, and vaccines against EBOV has boosted the search for effective countermeasures against the new coronavirus. As preparedness is key to contain forthcoming pandemics, lessons learned over the years by combating life-threatening viruses should help us to quickly deploy effective tools against novel emerging viruses.


2000 ◽  
Vol 7 (6) ◽  
pp. 325-334 ◽  
Author(s):  
Aglaia Koutsodimou ◽  
Giovanni Natile

NMR was used to investigate the reaction of cis- and trans-[RuCl2(DMSO)4] with the antiviral drug acyclovir, a guanine derivative containing the acyclic (2-hydroxo) ethoxymethyl pendant linked to N(9). Studies were performed in aqueous solutions at ambient temperature and at 37 °C, and at various molar ratios. Both isomers yielded two compounds, a monoadduct and a bisadduct, the relative yields being dependent upon the metal to ligand concentration ratios. The products derived from the two Ru isomers displayed identical NMR spectra, suggesting that they have the same coordination environment, however the rate of formation of the monoadduct was higher in the case of the trans isomer than in the case of the cis isomer, while the rate of conversion of the monoadduct into the bisadduct appeared to be similar in both cases. As a consequence in the case of the trans isomer there is accumulation of monoadduct in the early stage of the reaction, whose concentration afterwards decreases with the progress of the reaction. As for platinum, also for ruthenium the preferred binding site is N(7) of the purine base, however, in the case of ruthenium a discrete amount of bisadduct is formed even in the presence of an excess of metallic substrate with respect to the acyclovir ligand; under similar conditions a platinum substrate would have given, nearly exclusively, the monoadduct.


Sign in / Sign up

Export Citation Format

Share Document