scholarly journals Molecular Pathogenesis of Infections Caused by Legionella pneumophila

2010 ◽  
Vol 23 (2) ◽  
pp. 274-298 ◽  
Author(s):  
Hayley J. Newton ◽  
Desmond K. Y. Ang ◽  
Ian R. van Driel ◽  
Elizabeth L. Hartland

SUMMARY The genus Legionella contains more than 50 species, of which at least 24 have been associated with human infection. The best-characterized member of the genus, Legionella pneumophila, is the major causative agent of Legionnaires' disease, a severe form of acute pneumonia. L. pneumophila is an intracellular pathogen, and as part of its pathogenesis, the bacteria avoid phagolysosome fusion and replicate within alveolar macrophages and epithelial cells in a vacuole that exhibits many characteristics of the endoplasmic reticulum (ER). The formation of the unusual L. pneumophila vacuole is a feature of its interaction with the host, yet the mechanisms by which the bacteria avoid classical endosome fusion and recruit markers of the ER are incompletely understood. Here we review the factors that contribute to the ability of L. pneumophila to infect and replicate in human cells and amoebae with an emphasis on proteins that are secreted by the bacteria into the Legionella vacuole and/or the host cell. Many of these factors undermine eukaryotic trafficking and signaling pathways by acting as functional and, in some cases, structural mimics of eukaryotic proteins. We discuss the consequences of this mimicry for the biology of the infected cell and also for immune responses to L. pneumophila infection.

2022 ◽  
Vol 10 (1) ◽  
pp. 179
Author(s):  
Jiří Trousil ◽  
Lucia Frgelecová ◽  
Pavla Kubíčková ◽  
Kristína Řeháková ◽  
Vladimír Drašar ◽  
...  

Legionnaires’ disease is a severe form of lung infection caused by bacteria belonging to the genus Legionella. The disease severity depends on both host immunity and L. pneumophila virulence. The objective of this study was to describe the pathological spectrum of acute pneumonia caused by a virulent clinical isolate of L. pneumophila serogroup 1, sequence type 62. In A/JOlaHsd mice, we compared two infectious doses, namely, 104 and 106 CFU, and their impact on the mouse status, bacterial clearance, lung pathology, and blood count parameters was studied. Acute pneumonia resembling Legionnaires’ disease has been described in detail.


2013 ◽  
Vol 82 (1) ◽  
pp. 275-285 ◽  
Author(s):  
Jens Jäger ◽  
Sebastian Marwitz ◽  
Jana Tiefenau ◽  
Janine Rasch ◽  
Olga Shevchuk ◽  
...  

ABSTRACTHistological and clinical investigations describe late stages of Legionnaires' disease but cannot characterize early events of human infection. Cellular or rodent infection models lack the complexity of tissue or have nonhuman backgrounds. Therefore, we developed and applied a novel model forLegionella pneumophilainfection comprising living human lung tissue. We stimulated lung explants withL. pneumophilastrains and outer membrane vesicles (OMVs) to analyze tissue damage, bacterial replication, and localization as well as the transcriptional response of infected tissue. Interestingly, we found that extracellular adhesion ofL. pneumophilato the entire alveolar lining precedes bacterial invasion and replication in recruited macrophages. In contrast, OMVs predominantly bound to alveolar macrophages. Specific damage to septa and epithelia increased over 48 h and was stronger in wild-type-infected and OMV-treated samples than in samples infected with the replication-deficient, type IVB secretion-deficient DotA−strain. Transcriptome analysis of lung tissue explants revealed a differential regulation of 2,499 genes after infection. The transcriptional response included the upregulation of uteroglobin and the downregulation of the macrophage receptor with collagenous structure (MARCO). Immunohistochemistry confirmed the downregulation of MARCO at sites of pathogen-induced tissue destruction. Neither host factor has ever been described in the context ofL. pneumophilainfections. This work demonstrates that the tissue explant model reproduces realistic features of Legionnaires' disease and reveals new functions for bacterial OMVs during infection. Our model allows us to characterize early steps of human infection which otherwise are not feasible for investigations.


2001 ◽  
Vol 69 (1) ◽  
pp. 508-517 ◽  
Author(s):  
Suat L. G. Cirillo ◽  
Luiz E. Bermudez ◽  
Sahar H. El-Etr ◽  
Gerald E. Duhamel ◽  
Jeffrey D. Cirillo

ABSTRACT Successful parasitism of host cells by intracellular pathogens involves adherence, entry, survival, intracellular replication, and cell-to-cell spread. Our laboratory has been examining the role of early events, adherence and entry, in the pathogenesis of the facultative intracellular pathogen Legionella pneumophila. Currently, the mechanisms used by L. pneumophila to gain access to the intracellular environment are not well understood. We have recently isolated three loci, designated enh1,enh2, and enh3, that are involved in the ability of L. pneumophila to enter host cells. One of the genes present in the enh1 locus, rtxA, is homologous to repeats in structural toxin genes (RTX) found in many bacterial pathogens. RTX proteins from other bacterial species are commonly cytotoxic, and some of them have been shown to bind to β2 integrin receptors. In the current study, we demonstrate that the L. pneumophila rtxA gene is involved in adherence, cytotoxicity, and pore formation in addition to its role in entry. Furthermore, an rtxA mutant does not replicate as well as wild-type L. pneumophila in monocytes and is less virulent in mice. Thus, we conclude that the entry genertxA is an important virulence determinant in L. pneumophila and is likely to be critical for the production of Legionnaires' disease in humans.


2005 ◽  
Vol 73 (9) ◽  
pp. 5350-5357 ◽  
Author(s):  
Toshiaki Kikuchi ◽  
Sita Andarini ◽  
Hong Xin ◽  
Kazunori Gomi ◽  
Yutaka Tokue ◽  
...  

ABSTRACT Legionnaires' disease is clinically manifested as severe pneumonia caused by Legionella pneumophila. However, the dendritic cell (DC)-centered immunological framework of the host defense against L. pneumophila has not been fully delineated. For this study, we focused on a potent chemoattractant for lymphocytes, fractalkine/CX3CL1, and observed that the fractalkine expression of DCs was somewhat up-regulated when they encountered L. pneumophila. We therefore hypothesized that fractalkine expressed by Legionella-capturing DCs is involved in the induction of T-cell-mediated immune responses against Legionella, which would be enhanced by a genetic modulation of DCs to overexpress fractalkine. In vivo immunization-challenge experiments demonstrated that DCs modified with a recombinant adenovirus vector to overexpress fractalkine (AdFKN) and pulsed with heat-killed Legionella protected immunized mice from a lethal Legionella infection and that the generation of in vivo protective immunity depended on the host lymphocyte subsets, including CD4+ T cells, CD8+ T cells, and B cells. Consistent with this, immunization with AdFKN/Legionella/DC induced significantly higher levels of serum anti-Legionella antibodies of several isotypes than those induced by control immunizations. Further analysis of spleen cells from the immunized mice indicated that the AdFKN/Legionella/DC immunization elicited Th1-dominated immune responses to L. pneumophila. These observations suggest that fractalkine may play an important role in the DC-mediated host defense against intracellular pathogens such as L. pneumophila.


2014 ◽  
Vol 80 (19) ◽  
pp. 6031-6036 ◽  
Author(s):  
Katie Laird ◽  
Elena Kurzbach ◽  
Jodie Score ◽  
Jyoti Tejpal ◽  
George Chi Tangyie ◽  
...  

ABSTRACTLegionnaires' disease is a severe form of pneumonia caused byLegionellaspp., organisms often isolated from environmental sources, including soil and water.Legionellaspp. are capable of replicating intracellularly within free-living protozoa, and once this has occurred,Legionellais particularly resistant to disinfectants. Citrus essential oil (EO) vapors are effective antimicrobials against a range of microorganisms, with reductions of 5 log cells ml−1on a variety of surfaces. The aim of this investigation was to assess the efficacy of a citrus EO vapor againstLegionellaspp. in water and in soil systems. Reductions of viable cells ofLegionella pneumophila,Legionella longbeachae,Legionella bozemanii, and an intra-amoebal culture ofLegionella pneumophila(water system only) were assessed in soil and in water after exposure to a citrus EO vapor at concentrations ranging from 3.75 mg/liter air to 15g/liter air. Antimicrobial efficacy via different delivery systems (passive and active sintering of the vapor) was determined in water, and gas chromatography-mass spectrometry (GC-MS) analysis of the antimicrobial components (linalool, citral, and β-pinene) was conducted. There was up to a 5-log cells ml−1reduction inLegionellaspp. in soil after exposure to the citrus EO vapors (15 mg/liter air). The most susceptible strain in water wasL. pneumophila, with a 4-log cells ml−1reduction after 24 h via sintering (15 g/liter air). Sintering the vapor through water increased the presence of the antimicrobial components, with a 61% increase of linalool. Therefore, the appropriate method of delivery of an antimicrobial citrus EO vapor may go some way in controllingLegionellaspp. from environmental sources.


1997 ◽  
Vol 8 (3) ◽  
pp. 139-146 ◽  
Author(s):  
Paul S Hoffman

Legionella pneumophilais an environmental micro-organism capable of producing an acute lobar pneumonia, commonly referred to as Legionnaires’ disease, in susceptible humans. Legionellae are ubiquitous in aquatic environments, where they survive in biofilms or intracellularly in various protozoans. Susceptible humans become infected by breathing aerosols laden with the bacteria. The target cell for human infection is the alveolar macrophage, in which the bacteria abrogate phagolysosomal fusion. The remarkable ability ofL pneumophilato infect a wide range of eukaryotic cells suggests a common strategy that exploits very fundamental cellular processes. The bacteria enter host cells via coiling phagocytosis and quickly subvert organelle trafficking events, leading to formation of a replicative phagosome in which the bacteria multiply. Vegetative growth continues for 8 to 10 h, after which the bacteria develop into a short, highly motile form called the ‘mature form’. The mature form exhibits a thickening of the cell wall, stains red with the Gimenez stain, and is between 10 and 100 times more infectious than agar-grown bacteria. Following host cell lysis, the released bacteria infect other host cells, in which the mature form differentiates into a Gimenez-negative vegetative form, and the cycle begins anew. Virulence ofL pneumophilais considered to be multifactorial, and there is growing evidence for both stage specific and sequential gene expression. Thus,L pneumophilamay be a good model system for dissecting events associated with the host-parasite interactions.


2009 ◽  
Vol 66 (12) ◽  
pp. 1010-1014
Author(s):  
Ilija Andrijevic ◽  
Jovan Matijasevic ◽  
Djordje Povazan ◽  
Marija Kojicic ◽  
Uros Batranovic

Background. Legionnaires' disease (LD) is a pneumonia caused by Legionella pneumophila (LP). The disease occurs more often in immunocompromised persons and can be manifested by severe pneumonia, multiple organ failure and has a high mortality. Case report. Immunocompetent patient, male, 53- year old, with severe form of LB had fever, cough, weakness and diarrhea as the initial symptoms of the disease. Laboratory results showed increased number of leukocytes, increased values of acute phase proteins, liver enzymes and hyponatremia. Computed tomography of the chest showed the marked inflammatory lesions on both sides. Pathohystological analysis of the samples retrieved by bronchoscopy pointed to a pneumonia, and diagnosis of LD was confirmed by positive urine test for LP antigen. Later, the disease was complicated by acute adult respiratory distress syndrome (ARDS). Treatment with antibiotics (erythromycin, rifampicin, azithromycin) combined with ARDS treatment led to a clinical recovery of the patient together with complete resolution of inflammatory lesions seen on chest radiography. Conclusion. In severe pneumonias it is necessary to consider LD in differential diagnosis, perform tests with aim of detecting LP and apply adequate antibiotic treatment in order to accomplish positive outcome of the therapy and prevent complications.


2014 ◽  
Vol 197 (3) ◽  
pp. 563-571 ◽  
Author(s):  
Fabien Fuche ◽  
Anne Vianney ◽  
Claire Andrea ◽  
Patricia Doublet ◽  
Christophe Gilbert

Legionella pneumophilais a Gram-negative pathogen found mainly in water, either in a free-living form or within infected protozoans, where it replicates. This bacterium can also infect humans by inhalation of contaminated aerosols, causing a severe form of pneumonia called legionellosis or Legionnaires' disease. The involvement of type II and IV secretion systems in the virulence ofL. pneumophilais now well documented. Despite bioinformatic studies showing that a type I secretion system (T1SS) could be present in this pathogen, the functionality of this system based on the LssB, LssD, and TolC proteins has never been established. Here, we report the demonstration of the functionality of the T1SS, as well as its role in the infectious cycle ofL. pneumophila. Using deletion mutants and fusion proteins, we demonstrated that therepeats-in-toxin protein RtxA is secreted through an LssB-LssD-TolC-dependent mechanism. Moreover, fluorescence monitoring and confocal microscopy showed that this T1SS is required for entry into the host cell, although it seems dispensable to the intracellular cycle. Together, these results underline the active participation ofL. pneumophila, via its T1SS, in its internalization into host cells.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Loh Teng Hern Tan ◽  
Wei Yu Tee ◽  
Tahir Mehmood Khan ◽  
Long Chiau Ming ◽  
Vengadesh Letchumanan

Over the years, Legionella pneumophila has increasingly become a public health threat that causes sporadic and epidemic community-acquired and nosocomial-acquired pneumonia. Thus, this review aims to discuss the current knowledge of L. pneumophila, focusing on the global epidemiology, clinical features, diagnosis and treatment of Legionnaires’ disease (LD). Legionella bacteria are Gram-negative rod-shaped bacteria that are ubiquitous in aquatic environments. L. pneumophila was first discovered in 1976 and recognized as the causative agent of LD. L. pneumophila is a facultative intracellular pathogen that infects and replicates within eukaryotic host cells such as macrophages and protozoan. Diagnosis of LD remains a significant challenge as the clinical manifestation of LD is hardly distinguishable from pneumonia caused by other respiratory pathogens. Therefore, early testing and appropriate treatment are keys to alleviating the rising morbidity and mortality caused by LD.


2008 ◽  
Vol 74 (7) ◽  
pp. 2187-2199 ◽  
Author(s):  
Sharon G. Berk ◽  
Gary Faulkner ◽  
Elizabeth Garduño ◽  
Mark C. Joy ◽  
Marco A. Ortiz-Jimenez ◽  
...  

ABSTRACT The freshwater ciliate Tetrahymena sp. efficiently ingested, but poorly digested, virulent strains of the gram-negative intracellular pathogen Legionella pneumophila. Ciliates expelled live legionellae packaged in free spherical pellets. The ingested legionellae showed no ultrastructural indicators of cell division either within intracellular food vacuoles or in the expelled pellets, while the number of CFU consistently decreased as a function of time postinoculation, suggesting a lack of L. pneumophila replication inside Tetrahymena. Pulse-chase feeding experiments with fluorescent L. pneumophila and Escherichia coli indicated that actively feeding ciliates maintain a rapid and steady turnover of food vacuoles, so that the intravacuolar residence of the ingested bacteria was as short as 1 to 2 h. L. pneumophila mutants with a defective Dot/Icm virulence system were efficiently digested by Tetrahymena sp. In contrast to pellets of virulent L. pneumophila, the pellets produced by ciliates feeding on dot mutants contained very few bacterial cells but abundant membrane whorls. The whorls became labeled with a specific antibody against L. pneumophila OmpS, indicating that they were outer membrane remnants of digested legionellae. Ciliates that fed on genetically complemented dot mutants produced numerous pellets containing live legionellae, establishing the importance of the Dot/Icm system to resist digestion. We thus concluded that production of pellets containing live virulent L. pneumophila depends on bacterial survival (mediated by the Dot/Icm system) and occurs in the absence of bacterial replication. Pellets of virulent L. pneumophila may contribute to the transmission of Legionnaires’ disease, an issue currently under investigation.


Sign in / Sign up

Export Citation Format

Share Document