scholarly journals Dual Role of the Saccharomyces cerevisiae TEA/ATTS Family Transcription Factor Tec1p in Regulation of Gene Expression and Cellular Development

2002 ◽  
Vol 1 (5) ◽  
pp. 673-686 ◽  
Author(s):  
Tim Köhler ◽  
Stefanie Wesche ◽  
Naimeh Taheri ◽  
Gerhard H. Braus ◽  
Hans-Ulrich Mösch

ABSTRACT In Saccharomyces cerevisiae, the transcription factors Tec1p and Ste12p are required for haploid invasive and diploid pseudohyphal growth. Tec1p and Ste12p have been postulated to regulate these developmental processes primarily by cooperative binding to filamentous and invasion-responsive elements (FREs), which are combined enhancer elements that consist of a Tec1p-binding site (TCS) and an Ste12p-binding site (PRE). They are present in the promoter regions of target genes, e.g., FLO11. Here, we show that Tec1p efficiently activates target gene expression and cellular development in the absence of Ste12p. We further demonstrate that TCS elements alone are sufficient to mediate Tec1p-driven gene expression by a mechanism termed TCS control that is operative even when Ste12p is absent. Mutational analysis of TEC1 revealed that TCS control, FLO11 expression, and haploid invasive growth require the C terminus of Tec1p. In contrast, the Ste12p-dependent FRE control mechanism is sufficiently executed by the N-terminal portion of Tec1p, which contains the TEA/ATTS DNA-binding domain. Our study suggests that regulation of haploid invasive and diploid pseudohyphal growth by Ste12p and Tec1p is not only executed by combinatorial control but involves additional control mechanisms in which Ste12p activates TEC1 expression via clustered PREs and where Tec1p regulates expression of target genes, e.g., FLO11, by TCS control.

2012 ◽  
Vol 10 (01) ◽  
pp. 1240007 ◽  
Author(s):  
CHENGCHENG SHEN ◽  
YING LIU

Alteration of gene expression in response to regulatory molecules or mutations could lead to different diseases. MicroRNAs (miRNAs) have been discovered to be involved in regulation of gene expression and a wide variety of diseases. In a tripartite biological network of human miRNAs, their predicted target genes and the diseases caused by altered expressions of these genes, valuable knowledge about the pathogenicity of miRNAs, involved genes and related disease classes can be revealed by co-clustering miRNAs, target genes and diseases simultaneously. Tripartite co-clustering can lead to more informative results than traditional co-clustering with only two kinds of members and pass the hidden relational information along the relation chain by considering multi-type members. Here we report a spectral co-clustering algorithm for k-partite graph to find clusters with heterogeneous members. We use the method to explore the potential relationships among miRNAs, genes and diseases. The clusters obtained from the algorithm have significantly higher density than randomly selected clusters, which means members in the same cluster are more likely to have common connections. Results also show that miRNAs in the same family based on the hairpin sequences tend to belong to the same cluster. We also validate the clustering results by checking the correlation of enriched gene functions and disease classes in the same cluster. Finally, widely studied miR-17-92 and its paralogs are analyzed as a case study to reveal that genes and diseases co-clustered with the miRNAs are in accordance with current research findings.


2020 ◽  
Vol 117 (31) ◽  
pp. 18424-18430 ◽  
Author(s):  
Emily K. Bowman ◽  
Matthew Deaner ◽  
Jan-Fang Cheng ◽  
Robert Evans ◽  
Ernst Oberortner ◽  
...  

Most classic genetic approaches utilize binary modifications that preclude the identification of key knockdowns for essential genes or other targets that only require moderate modulation. As a complementary approach to these classic genetic methods, we describe a plasmid-based library methodology that affords bidirectional, graded modulation of gene expression enabled by tiling the promoter regions of all 969 genes that comprise the ito977 model ofSaccharomyces cerevisiae’s metabolic network. When coupled with a CRISPR-dCas9–based modulation and next-generation sequencing, this method affords a library-based, bidirection titration of gene expression across all major metabolic genes. We utilized this approach in two case studies: growth enrichment on alternative sugars, glycerol and galactose, and chemical overproduction of betaxanthins, leading to the identification of unique gene targets. In particular, we identify essential genes and other targets that were missed by classic genetic approaches.


2016 ◽  
Vol 113 (13) ◽  
pp. E1835-E1843 ◽  
Author(s):  
Mina Fazlollahi ◽  
Ivor Muroff ◽  
Eunjee Lee ◽  
Helen C. Causton ◽  
Harmen J. Bussemaker

Regulation of gene expression by transcription factors (TFs) is highly dependent on genetic background and interactions with cofactors. Identifying specific context factors is a major challenge that requires new approaches. Here we show that exploiting natural variation is a potent strategy for probing functional interactions within gene regulatory networks. We developed an algorithm to identify genetic polymorphisms that modulate the regulatory connectivity between specific transcription factors and their target genes in vivo. As a proof of principle, we mapped connectivity quantitative trait loci (cQTLs) using parallel genotype and gene expression data for segregants from a cross between two strains of the yeast Saccharomyces cerevisiae. We identified a nonsynonymous mutation in the DIG2 gene as a cQTL for the transcription factor Ste12p and confirmed this prediction empirically. We also identified three polymorphisms in TAF13 as putative modulators of regulation by Gcn4p. Our method has potential for revealing how genetic differences among individuals influence gene regulatory networks in any organism for which gene expression and genotype data are available along with information on binding preferences for transcription factors.


2008 ◽  
Vol 28 (12) ◽  
pp. 3894-3904 ◽  
Author(s):  
Brandi A. Thompson ◽  
Véronique Tremblay ◽  
Grace Lin ◽  
Daniel A. Bochar

ABSTRACT ATP-dependent chromatin remodeling by the CHD family of proteins plays an important role in the regulation of gene transcription. Here we report that full-length CHD8 interacts directly with β-catenin and that CHD8 is also recruited specifically to the promoter regions of several β-catenin-responsive genes. Our results indicate that CHD8 negatively regulates β-catenin-targeted gene expression, since short hairpin RNA against CHD8 results in the activation of several β-catenin target genes. This regulation is also conserved through evolution; RNA interference against kismet, the apparent Drosophila ortholog of CHD8, results in a similar activation of β-catenin target genes. We also report the first demonstration of chromatin remodeling activity for a member of the CHD6-9 family of proteins, suggesting that CHD8 functions in transcription through the ATP-dependent modulation of chromatin structure.


2006 ◽  
Vol 26 (7) ◽  
pp. 2791-2802 ◽  
Author(s):  
Melissa Durant ◽  
B. Franklin Pugh

ABSTRACT Histone acetylation regulates gene expression, yet the functional contributions of the numerous histone acetyltransferases (HATs) to gene expression and their relationships with each other remain largely unexplored. The central role of the putative HAT-containing TAF1 subunit of TFIID in gene expression raises the fundamental question as to what extent, if any, TAF1 contributes to acetylation in vivo and to what extent it is redundant with other HATs. Our findings herein do not support the basic tenet that TAF1 is a major HAT in Saccharomyces cerevisiae, nor do we find that TAF1 is functionally redundant with other HATs, including Gcn5, Elp3, Hat1, Hpa2, Sas3, and Esa1, which is in contrast to previous conclusions regarding Gcn5. Our findings do reveal that of these HATs, only Gcn5 and Esa1 contribute substantially to gene expression genome wide. Interestingly, histone acetylation at promoter regions throughout the genome does not require TAF1 or RNA polymerase II, indicating that most acetylation is likely to precede transcription and not depend upon it. TAF1 function has been linked to Bdf1, which binds TFIID and acetylated histone H4 tails, but no linkage between TAF1 and the H4 HAT Esa1 has been established. Here, we present evidence for such a linkage through Bdf1.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 523-523
Author(s):  
Marco De Gobbi ◽  
Vip Viprakasit ◽  
Pieter J. de Jong ◽  
Yuko Yoshinaga ◽  
Jan-Fang Cheng ◽  
...  

Abstract The human α globin cluster includes an embryonic gene ζ and 2 fetal/adult genes (α2 and α1) arranged along the chromosome in the order in which they are expressed in development (5′-ζ-pseudoζ- αD- α2-α1-𝛉-3′). Fully activated expression of these genes in erythroid cells depends on upstream regulatory elements of which HS-40, located 40kb upstream of the cluster, appears to exert the greatest effect. We have recently shown that during terminal differentiation, key transcription factors (GATA-2, GATA-1, NF-E2, SCL complex) sequentially bind the α promoters and their regulatory elements and a domain of histone acetylation develops which eventually encompasses the entire α globin cluster including the upstream regulatory sequences. α-thalassemia most frequently results from deletions or point mutations affecting the structural α globin genes, but may also result from rare sporadic deletions which remove the upstream regulatory sequences. In a single family α globin expression was silenced by a mutation which drives an anti-sense RNA through the α gene. Alpha thalassemia may also result from inherited and acquired mutations in a trans-acting factor called ATRX. Over the past few years we have continued to screen for new mechanisms which lead to α thalassemia and thereby elucidate new principles underlying the regulation of gene expression in hemopoiesis. Here we describe a new mechanism of α thalassemia occurring in Pacific Islanders in whom we could detect no mutations or rearrangements in the α globin gene locus. Despite this, extensive genetic analysis showed unequivocally that the causative mutation is linked to the terminal 169kb of chromosome 16 (Viprakasit et al accompanying abstract). Analysis of globin synthesis, steady state RNA levels and detection of RNA in situ demonstrated that the mutation downregulates α globin transcription. To identify the mutation, we constructed a new BAC library from an affected homozygote, isolated and re-sequenced the candidate region and focussed further analysis on 8 SNPS within the α globin cluster, one of which creates a new GATA-1 binding site (GACA>GATA). Using primary erythroblasts from normal individuals and patients with this form of thalassemia, together with interspecific hybrids containing either the normal or abnormal copy of chromosome 16, we have shown that this SNP creates a new binding site in vivo for GATA-1 and the SCL complex. Furthermore, the chromatin at this site becomes activated as judged by acetylation of histone H3 and H4 (H3ac2 and H4ac4) and methylation of histone H3 (H3K4me2). Based on these data we postulate that an active transcriptional complex binding this new GATA site created by the SNP-mutation, could distract the upstream regulatory regions, which normally interact with the α globin promoter, and silence α globin gene expression. This model thus represents a new example of α globin gene down-regulation and a new mechanism by which gene expression can be perturbed during hemopoiesis.


FEBS Letters ◽  
2001 ◽  
Vol 508 (3) ◽  
pp. 475-478 ◽  
Author(s):  
Maria Carmela Bonaccorsi di Patti ◽  
Maria Paola Paronetto ◽  
Valeria Dolci ◽  
Maria Rosa Felice ◽  
Amalia Lania ◽  
...  

2005 ◽  
Vol 25 (23) ◽  
pp. 10235-10250 ◽  
Author(s):  
Anna H. Schuh ◽  
Alex J. Tipping ◽  
Allison J. Clark ◽  
Isla Hamlett ◽  
Boris Guyot ◽  
...  

ABSTRACT Lineage specification and cellular maturation require coordinated regulation of gene expression programs. In large part, this is dependent on the activator and repressor functions of protein complexes associated with tissue-specific transcriptional regulators. In this study, we have used a proteomic approach to characterize multiprotein complexes containing the key hematopoietic regulator SCL in erythroid and megakaryocytic cell lines. One of the novel SCL-interacting proteins identified in both cell types is the transcriptional corepressor ETO-2. Interaction between endogenous proteins was confirmed in primary cells. We then showed that SCL complexes are shared but also significantly differ in the two cell types. Importantly, SCL/ETO-2 interacts with another corepressor, Gfi-1b, in red cells but not megakaryocytes. The SCL/ETO-2/Gfi-1b association is lost during erythroid differentiation of primary fetal liver cells. Genetic studies of erythroid cells show that ETO-2 exerts a repressor effect on SCL target genes. We suggest that, through its association with SCL, ETO-2 represses gene expression in the early stages of erythroid differentiation and that alleviation/modulation of the repressive state is then required for expression of genes necessary for terminal erythroid maturation to proceed.


2018 ◽  
Author(s):  
Heather E. Wheeler ◽  
Sally Ploch ◽  
Alvaro N. Barbeira ◽  
Rodrigo Bonazzola ◽  
Angela Andaleon ◽  
...  

AbstractRegulation of gene expression is an important mechanism through which genetic variation can affect complex traits. A substantial portion of gene expression variation can be explained by both local (cis) and distal (trans) genetic variation. Much progress has been made in uncovering cis-acting expression quantitative trait loci (cis-eQTL), but trans-eQTL have been more difficult to identify and replicate. Here we take advantage of our ability to predict the cis component of gene expression coupled with gene mapping methods such as PrediXcan to identify high confidence candidate trans-acting genes and their targets. That is, we correlate the cis component of gene expression with observed expression of genes in different chromosomes. Leveraging the shared cis-acting regulation across tissues, we combine the evidence of association across all available GTEx tissues and find 2356 trans-acting/target gene pairs with high mappability scores. Reassuringly, trans-acting genes are enriched in transcription and nucleic acid binding pathways and target genes are enriched in known transcription factor binding sites. Interestingly, trans-acting genes are more significantly associated with selected complex traits and diseases than target or background genes, consistent with percolating trans effects. Our scripts and summary statistics are publicly available for future studies of trans-acting gene regulation.


Sign in / Sign up

Export Citation Format

Share Document