scholarly journals Antibody Targeting the Ferritin-Like Protein Controls Listeria Infection

2010 ◽  
Vol 78 (7) ◽  
pp. 3306-3314 ◽  
Author(s):  
Walid Mohamed ◽  
Shneh Sethi ◽  
Ayub Darji ◽  
Mobarak A. Mraheil ◽  
Torsten Hain ◽  
...  

ABSTRACT The acquisition of iron during the infection process is essential for the growth of pathogenic microorganisms (S. C. Andrews, Adv. Microb. Physiol. 40:281-351, 1998; H. M. Baker, B. F. Anderson, and E. N. Baker, Proc. Natl. Acad. Sci. U. S. A. 100:3579-3583, 2003). Since the solubility of iron is low and it is toxic at low concentrations, following uptake, iron is stored in subcellular microenvironments in the iron storage protein ferritin (C. Cheers and M. Ho, J. Reticuloendothel. Soc. 34:299-309, 1983). Here, we show that ferritin-like proteins (Frl) are highly conserved in the genus Listeria and demonstrate that these proteins are present in both the cytoplasm and cell wall fractions of these bacteria. Even though Frl is expressed under different growth conditions, transcriptional mapping revealed that its regulation is complex. When bacteria are grown in brain heart infusion medium, extracellular expression involves both sigma A (SigA)- and sigma B (SigB)-dependent promoters; however, during intracellular growth, initiation of transcription is additionally SigB dependent. The expression of Frl is greatly enhanced in bacteria grown in the presence of blood, and a mutant strain lacking the frl gene was defective for growth in this medium. Using the monoclonal antibody (MAb) specific for Frl, we demonstrate that administration of anti-Frl MAb prior to infection confers antilisterial resistance in vivo, evidenced in reduced bacterial load and increased survival rates, thereby demonstrating the in vivo significance of upregulated cell surface-associated Frl expression. In vitro studies revealed that the antilisterial resistance is due to increased listerial phagocytosis.

1999 ◽  
Vol 67 (11) ◽  
pp. 6084-6089 ◽  
Author(s):  
Robert Bals ◽  
Daniel J. Weiner ◽  
A. David Moscioni ◽  
Rupalie L. Meegalla ◽  
James M. Wilson

ABSTRACT Antimicrobial peptides, such as defensins or cathelicidins, are effector substances of the innate immune system and are thought to have antimicrobial properties that contribute to host defense. The evidence that vertebrate antimicrobial peptides contribute to innate immunity in vivo is based on their expression pattern and in vitro activity against microorganisms. The goal of this study was to investigate whether the overexpression of an antimicrobial peptide results in augmented protection against bacterial infection. C57BL/6 mice were given an adenovirus vector containing the cDNA for LL-37/hCAP-18, a human cathelicidin antimicrobial peptide. Mice treated with intratracheal LL-37/hCAP-18 vector had a lower bacterial load and a smaller inflammatory response than did untreated mice following pulmonary challenge with Pseudomonas aeruginosa PAO1. Systemic expression of LL-37/hCAP-18 after intravenous injection of recombinant adenovirus resulted in improved survival rates following intravenous injection of lipopolysaccharide with galactosamine or Escherichia coli CP9. In conclusion, the data demonstrate that expression of an antimicrobial peptide by gene transfer results in augmentation of the innate immune response, providing support for the hypothesis that vertebrate antimicrobial peptides protect against microorganisms in vivo.


2021 ◽  
Vol 22 (3) ◽  
pp. 1222
Author(s):  
Cristina Cuello ◽  
Cristina A. Martinez ◽  
Josep M. Cambra ◽  
Inmaculada Parrilla ◽  
Heriberto Rodriguez-Martinez ◽  
...  

This study was designed to investigate the impact of vitrification on the transcriptome profile of blastocysts using a porcine (Sus scrofa) model and a microarray approach. Blastocysts were collected from weaned sows (n = 13). A total of 60 blastocysts were vitrified (treatment group). After warming, vitrified embryos were cultured in vitro for 24 h. Non-vitrified blastocysts (n = 40) were used as controls. After the in vitro culture period, the embryo viability was morphologically assessed. A total of 30 viable embryos per group (three pools of 10 from 4 different donors each) were subjected to gene expression analysis. A fold change cut-off of ±1.5 and a restrictive threshold at p-value < 0.05 were used to distinguish differentially expressed genes (DEGs). The survival rates of vitrified/warmed blastocysts were similar to those of the control (nearly 100%, n.s.). A total of 205 (112 upregulated and 93 downregulated) were identified in the vitrified blastocysts compared to the control group. The vitrification/warming impact was moderate, and it was mainly related to the pathways of cell cycle, cellular senescence, gap junction, and signaling for TFGβ, p53, Fox, and MAPK. In conclusion, vitrification modified the transcriptome of in vivo-derived porcine blastocysts, resulting in minor gene expression changes.


2001 ◽  
Vol 69 (6) ◽  
pp. 4079-4085 ◽  
Author(s):  
Sarah E. Cramton ◽  
Martina Ulrich ◽  
Friedrich Götz ◽  
Gerd Döring

ABSTRACT Products of the intercellular adhesion (ica) operon in Staphylococcus aureus and Staphylococcus epidermidis synthesize a linear β-1,6-linked glucosaminylglycan. This extracellular polysaccharide mediates bacterial cell-cell adhesion and is required for biofilm formation, which is thought to increase the virulence of both pathogens in association with prosthetic biomedical implants. The environmental signal(s) that triggers ica gene product and polysaccharide expression is unknown. Here we demonstrate that anaerobic in vitro growth conditions lead to increased polysaccharide expression in both S. aureus and S. epidermidis, although the regulation is less stringent inS. epidermidis. Anaerobiosis also dramatically stimulates ica-specific mRNA expression inica- and polysaccharide-positive strains of both S. aureus and S. epidermidis.These data suggest a mechanism whereby ica gene expression and polysaccharide production may act as a virulence factor in an anaerobic environment in vivo.


1992 ◽  
Vol 12 (4) ◽  
pp. 1507-1514
Author(s):  
C L Denis ◽  
S C Fontaine ◽  
D Chase ◽  
B E Kemp ◽  
L T Bemis

Four ADR1c mutations that occur close to Ser-230 of the Saccharomyces cerevisiae transcriptional activator ADR1 and which greatly enhance the ability of ADR1 to activate ADH2 expression under glucose-repressed conditions have been shown to reduce or eliminate cyclic AMP-dependent protein kinase (cAPK) phosphorylation of Ser-230 in vitro. In addition, unregulated cAPK expression in vivo blocks ADH2 depression in an ADR1-dependent fashion in which ADR1c mutations display decreased sensitivity to unregulated cAPK activity. Taken together, these data have suggested that ADR1c mutations enhance ADR1 activity by blocking cAPK phosphorylation and inactivation of Ser-230. We have isolated and characterized an additional 17 ADR1c mutations, defining 10 different amino acid changes, that were located in the region defined by amino acids 227 through 239 of ADR1. Three observations, however, indicate that the ADR1c phenotype is not simply equivalent to a lack of cAPK phosphorylation. First, only some of these newly isolated ADR1c mutations affected the ability of yeast cAPK to phosphorylate corresponding synthetic peptides modeled on the 222 to 234 region of ADR1 in vitro. Second, we observed that strains lacking cAPK activity did not display enhanced ADH2 expression under glucose growth conditions. Third, when Ser-230 was mutated to a nonphosphorylatable residue, lack of cAPK activity led to a substantial increase in ADH2 expression under glucose-repressed conditions. Thus, while cAPK controls ADH2 expression and ADR1 is required for this control, cAPK acts by a mechanism that is independent of effects on ADR1 Ser-230. It was also observed that deletion of the ADR1c region resulted in an ADR1c phenotype. The ADR1c region is, therefore, involved in maintaining ADR1 in an inactive form. ADR1c mutations may block the binding of a repressor to ADR1 or alter the structure of ADR1 so that transcriptional activation regions become unmasked.


1993 ◽  
Vol 296 (3) ◽  
pp. 851-857 ◽  
Author(s):  
T Belyaeva ◽  
L Griffiths ◽  
S Minchin ◽  
J Cole ◽  
S Busby

The Escherichia coli cysG promoter has been subcloned and shown to function constitutively in a range of different growth conditions. Point mutations identify the -10 hexamer and an important 5′-TGN-3′ motif immediately upstream. The effects of different deletions suggest that specific sequences in the -35 region are not essential for the activity of this promoter in vivo. This conclusion was confirmed by in vitro run-off transcription assays. The DNAase I footprint of RNA polymerase at the cysG promoter reveals extended protection upstream of the transcript start, and studies with potassium permanganate as a probe suggest that the upstream region is distorted in open complexes. Taken together, the results show that the cysG promoter belongs to the ‘extended -10’ class of promoters, and the base sequence is similar to that of the P1 promoter of the E. coli galactose operon, another promoter in this class. In vivo, messenger initiated at the cysG promoter appears to be processed by cleavage at a site 41 bases downstream from the transcript start point.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A801-A801
Author(s):  
Sachin Bhagchandani ◽  
Lauren Milling ◽  
Bin Liu ◽  
Timothy Fessenden ◽  
Stefani Spranger ◽  
...  

BackgroundAlthough toll-like receptor (TLR) agonists such as imidazoquinoline derivatives (IMDs) have been well researched and are FDA approved as topical solutions for treatment of skin cancer, their systemic delivery for treatment of metastatic disease has not been successful due to toxicity issues. Therefore, to lessen the degree of the adverse effects of intravenous delivery of IMDs such as resiquimod (R848), a bottlebrush prodrug (BPD) system enabling controlled release of R848 at tunable rates was designed and synthesized. We hypothesized that this approach would allow for minimizing the release of the free drug in serum, allowing for a higher concentration to accumulate in the tumor while minimizing systemic side effects.MethodsR848 was conjugated to a bottlebrush polymer with different linkers designed to precisely tune the R848 release rate. The release rates of the drug delivered through this system were first tested in PBS. These prodrug formulations were validated for drug activity in vitro in mouse and human TLR reporter cells. The maximum tolerable dose was defined by monitoring weight loss and serum cytokine levels upon intravenous administration at multiple concentrations. Finally, anti-tumor efficacy of the BPD system was tested in vivo using the MC38 colon cancer model as a monotherapy and in combination with anti-PD-1 antibody treatment.ResultsThe in-vitro half-lives of the conjugated drugs varied from a few days to over a month when tested in PBS. The different BPDs demonstrated linker dependent TLR activation upon culturing with TLR reporter cells validating the immunomodulatory activity of R848. It was found that the R848-BPDs, which accumulated at the tumor site over time, significantly delayed tumor growth and improved survival rates, which was further enhanced when used in combination with anti-PD-1.ConclusionsOverall, our research suggests that our R848-BPD platform allows for safe, systemic delivery of TLR agonists to activate the immune system in treatment of cancer.


2019 ◽  
Author(s):  
Alfonso Bolado-Carrancio ◽  
Morwenna Muir ◽  
Ailith Ewing ◽  
Kenneth Macleod ◽  
William Gallagher ◽  
...  

ABSTRACTISG15 is an ubiquitin-like modifier that is associated with reduced survival rates in breast cancer patients. However, the mechanism by which ISG15 achieves this remains elusive. We demonstrate that modification of Rab GDP-Dissociation Inhibitor Beta (GDI2) by ISG15 (ISGylation) alters endocytic recycling of the EGF receptor (EGFR). By regulating EGFR trafficking, ISGylation sustains Akt-signalling in vitro and in vivo. Persistent and enhanced Akt activation explains the more aggressive tumour behaviour observed in animal models and human breast cancers. We show that ISGylation can act as driver of tumour progression rather than merely being a marker of it.


2018 ◽  
Vol 96 (6) ◽  
pp. 808-817 ◽  
Author(s):  
Lyudmila Ounpuu ◽  
Laura Truu ◽  
Igor Shevchuk ◽  
Vladimir Chekulayev ◽  
Aleksandr Klepinin ◽  
...  

The aim of this work was to explore the key bioenergetic properties for mitochondrial respiration in the widely-used Caco-2 cell line and in human colorectal cancer (HCC) postoperational tissue samples. Oxygraphy and metabolic control analysis (MCA) were applied to estimate the function of oxidative phosphorylation in cultured Caco-2 cells and HCC tissue samples. The mitochondria of Caco-2 cells and HCC tissues displayed larger functional activity of respiratory complex (C)II compared with CI, whereas in normal colon tissue an inverse pattern in the ratio of CI to CII activity was observed. MCA showed that the respiration in Caco-2 and HCC tissue cells is regulated by different parts of electron transport chain. In HCC tissues, this control is performed essentially at the level of respiratory chain complexes I–IV, whereas in Caco-2 cells at the level of CIV (cytochrome c oxidase) and the ATP synthasome. The differences we found in the regulation of respiratory chain activity and glycose index could represent an adaptive response to distinct growth conditions; this highlights the importance of proper validation of results obtained from in-vitro models before their extrapolation to the more complex in-vivo systems.


2021 ◽  
Author(s):  
Nehal El Deeb ◽  
Mai A. Abo-Eleneen ◽  
Omyma A. Awad ◽  
Atef M. Abo-Shady

Abstract Biogenic Silver Nanoparticle (bio-AgNPs) is one of the most fascinating nanomaterials used in the biomedical purposes. In the current study, we biosynthesized AgNPs (bio-AgNPs) using Arthrospira platensis(A-bio-AgNPs), Microcystis aeruginosa(M-bio-AgNPs)and Chlorella vulgaris(C-bio-AgNPs) active metabolites and evaluated their anticancer efficacy against breast cancer. The recovered bio-AgNPs were characterized using Scanning and Transmission Electron Microscopy (SEM and TEM) and their safety profiles were monitoring in-vitro on PBMCs cells and in-vivo on Albino mice. The obtained results indicated the safety usage of bio-AgNPs at concentration of 0.1 mg/ml on PBMCs cells and 1.5mg/ml on the Albino mice. The bio-AgNPs displayed dose-dependent cytotoxic effects against HepG-2, CaCO-2 and MCF-7 cell lines by inducing ROS and arresting the treated cells in G0/G1 and sub G0 phases. In addition, A-bio-AgNPs induced breast cancer cellular apoptosis by down regulating the expression of survivin, MMP7, TGF and Bcl2 genes. Upon A-bio-AgNPs treatment, a significant reduction in tumor growth and prolonged survival rates were recorded in breast cancer BALB/c model. Furthermore, A-bio-AgNPs treatment significant decreased theKi 67 protein marker from 60% (in the untreated group) to 20% and increased Caspase 3 protein levels to 65% (in treated groups) comparing with 45% (in Doxorubicin treated groups).


Plant Disease ◽  
2020 ◽  
Vol 104 (2) ◽  
pp. 551-559
Author(s):  
Y. Y. Gao ◽  
X. X. Li ◽  
L. F. He ◽  
B. X. Li ◽  
W. Mu ◽  
...  

Anthracnose caused by Colletotrichum scovillei is one of the most destructive diseases affecting chili production. Disease control mainly relies on conventional fungicides, and repeated exposure to single-site mode-of-action fungicides may pose a risk for the development of resistant isolates within the population. Our previous study suggested that pyrisoxazole has strong inhibitory activity against C. scovillei in vitro. However, the effects of pyrisoxazole on the C. scovillei infection process and the performance of pyrisoxazole in the field remain unclear. In this study, pyrisoxazole exhibited strong inhibitory activity against the mycelial growth, appressorium formation, and appressorium diameter of C. scovillei, with half maximal effective concentration values of 0.1986, 0.0147, and 0.0269 μg/ml, respectively, but had no effect on sporulation, even at the highest concentration of 1.6 μg/ml. The baseline sensitivity curves were unimodal with a long right-hand tail. The in vivo data showed that pyrisoxazole provided both preventive and curative activity against anthracnose on chili. Pyrisoxazole decreased the incidence of anthracnose and reduced disease progress. The results of electron microscopy showed that pyrisoxazole can affect the C. scovillei infection process by altering mycelial morphology, degrading conidia and germ tubes, suppressing conidial germination and appressorium formation, and enhancing conidiophore production. Pyrisoxazole can be used to effectively control anthracnose under field conditions and increase chili yield; moreover, no phytotoxicity symptoms were observed after treatment. These results provide new insight into the mechanisms by which pyrisoxazole controls disease and suggest that pyrisoxazole is a feasible alternative for the management of anthracnose in chili.


Sign in / Sign up

Export Citation Format

Share Document