scholarly journals The Virulence Transcriptional Activator AphA Enhances Biofilm Formation by Vibrio cholerae by Activating Expression of the Biofilm Regulator VpsT

2009 ◽  
Vol 78 (2) ◽  
pp. 697-703 ◽  
Author(s):  
Menghua Yang ◽  
Erin M. Frey ◽  
Zhi Liu ◽  
Rima Bishar ◽  
Jun Zhu

ABSTRACT Vibrio cholerae is the agent of the severe diarrheal disease cholera, and it perpetuates in aquatic reservoirs when not in the host. Within the host's intestines, the bacteria execute a complex regulatory pathway culminating with the production of virulence factors that allow colonization and cause disease. The ability of V. cholerae to form biofilms is thought to aid its persistence in the aquatic environment and passage through the gastric acid barrier of the stomach. The transcriptional activators VpsR and VpsT are part of the biofilm formation-regulatory network. In this study, we screened a V. cholerae genomic library in Escherichia coli cells containing a P vpsT -luxCDBAE transcriptional fusion reporter and found that a plasmid clone containing the aphA gene activates the expression of vpsT in E. coli. AphA is a master virulence regulator in V. cholerae that is required to activate the expression of tcpP, whose gene products in turn activate all virulence genes including those responsible for the synthesis of the toxin-coregulated pilus (TCP) and cholera toxin through the activation of toxT. AphA has a direct effect on the vpsT promoter, as gel shift experiments demonstrated that AphA binds to the vpsT promoter region. Furthermore, V. cholerae aphA mutants exhibit significantly lower levels of vpsT expression as well as reduced biofilm formation. AphA thus links the expression of virulence and biofilm synthesis genes.

2018 ◽  
Vol 9 (39) ◽  
pp. 7715-7715
Author(s):  
Nicolas Perez-Soto ◽  
Lauren Moule ◽  
Daniel N. Crisan ◽  
Ignacio Insua ◽  
Leanne M. Taylor-Smith ◽  
...  

Correction for ‘Engineering microbial physiology with synthetic polymers: cationic polymers induce biofilm formation inVibrio choleraeand downregulate the expression of virulence genes’ by Nicolas Perez-Sotoet al.,Chem. Sci., 2017,8, 5291–5298.


2000 ◽  
Vol 182 (7) ◽  
pp. 2026-2032 ◽  
Author(s):  
Christian Tendeng ◽  
Cyril Badaut ◽  
Evelyne Krin ◽  
Pierre Gounon ◽  
Saravuth Ngo ◽  
...  

ABSTRACT During the last decade, the hns gene and its product, the H-NS protein, have been extensively studied in Escherichia coli. H-NS-like proteins seem to be widespread in gram-negative bacteria. However, unlike in E. coli and inSalmonella enterica serovar Typhimurium, little is known about their role in the physiology of those organisms. In this report, we describe the isolation of vicH, an hns-like gene in Vibrio cholerae, the etiological agent of cholera. This gene was isolated from a V. cholerae genomic library by complementation of different phenotypes associated with anhns mutation in E. coli. It encodes a 135-amino-acid protein showing approximately 50% identity with both H-NS and StpA in E. coli. Despite a low amino acid conservation in the N-terminal part, VicH is able to cross-react with anti-H-NS antibodies and to form oligomers in vitro. ThevicH gene is expressed as a single gene from two promoters in tandem and is induced by cold shock. A V. choleraewild-type strain expressing a vicHΔ92 gene lacking its 3′ end shows pleiotropic alterations with regard to mucoidy and salicin metabolism. Moreover, this strain is unable to swarm on semisolid medium. Similarly, overexpression of the vicH wild-type gene results in an alteration of swarming behavior. This suggests that VicH could be involved in the virulence process in V. cholerae, in particular by affecting flagellum biosynthesis.


2004 ◽  
Vol 186 (15) ◽  
pp. 4864-4874 ◽  
Author(s):  
Crystal M. Lauriano ◽  
Chandradipa Ghosh ◽  
Nidia E. Correa ◽  
Karl E. Klose

ABSTRACT Vibrio cholerae causes the life-threatening diarrheal disease cholera. This organism persists in aquatic environments in areas of endemicity, and it is believed that the ability of the bacteria to form biofilms in the environment contributes to their persistence. Expression of an exopolysaccharide (EPS), encoded by two vps gene clusters, is essential for biofilm formation and causes a rugose colonial phenotype. We previously reported that the lack of a flagellum induces V. cholerae EPS expression. To uncover the signaling pathway that links the lack of a flagellum to EPS expression, we introduced into a rugose flaA strain second-site mutations that would cause reversion back to the smooth phenotype. Interestingly, mutation of the genes encoding the sodium-driven motor (mot) in a nonflagellated strain reduces EPS expression, biofilm formation, and vps gene transcription, as does the addition of phenamil, which specifically inhibits the sodium-driven motor. Mutation of vpsR, which encodes a response regulator, also reduces EPS expression, biofilm formation, and vps gene transcription in nonflagellated cells. Complementation of a vpsR strain with a constitutive vpsR allele likely to mimic the phosphorylated state (D59E) restores EPS expression and biofilm formation, while complementation with an allele predicted to remain unphosphorylated (D59A) does not. Our results demonstrate the involvement of the sodium-driven motor and suggest the involvement of phospho-VpsR in the signaling cascade that induces EPS expression. A nonflagellated strain expressing EPS is defective for intestinal colonization in the suckling mouse model of cholera and expresses reduced amounts of cholera toxin and toxin-coregulated pili in vitro. Wild-type levels of virulence factor expression and colonization could be restored by a second mutation within the vps gene cluster that eliminated EPS biosynthesis. These results demonstrate a complex relationship between the flagellum-dependent EPS signaling cascade and virulence.


mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Giordan Kitts ◽  
Krista M. Giglio ◽  
David Zamorano-Sánchez ◽  
Jin Hwan Park ◽  
Loni Townsley ◽  
...  

ABSTRACT The dinucleotide second messenger c-di-GMP has emerged as a central regulator of reversible cell attachment during bacterial biofilm formation. A prominent cell adhesion mechanism first identified in pseudomonads combines two c-di-GMP-mediated processes: transcription of a large adhesin and its cell surface display via posttranslational proteolytic control. Here, we characterize an orthologous c-di-GMP effector system and show that it is operational in Vibrio cholerae, where it regulates two distinct classes of adhesins. Through structural analyses, we reveal a conserved autoinhibition mechanism of the c-di-GMP receptor that controls adhesin proteolysis and present a structure of a c-di-GMP-bound receptor module. We further establish functionality of the periplasmic protease controlled by the receptor against the two adhesins. Finally, transcription and functional assays identify physiological roles of both c-di-GMP-regulated adhesins in surface attachment and biofilm formation. Together, our studies highlight the conservation of a highly efficient signaling effector circuit for the control of cell surface adhesin expression and its versatility by revealing strain-specific variations. IMPORTANCE Vibrio cholerae, the causative agent of the diarrheal disease cholera, benefits from a sessile biofilm lifestyle that enhances survival outside the host but also contributes to host colonization and infectivity. The bacterial second messenger c-di-GMP has been identified as a central regulator of biofilm formation, including in V. cholerae; however, our understanding of the pathways that contribute to this process is incomplete. Here, we define a conserved signaling system that controls the stability of large adhesion proteins at the cell surface of V. cholerae, which are important for cell attachment and biofilm formation. Insight into the regulatory circuit underlying biofilm formation may inform targeted strategies to interfere with a process that renders this bacterium remarkably adaptable to changing environments.


Author(s):  
Rodolfo Notario ◽  
Noemi Borda ◽  
Telma Gambande ◽  
Emma Sutich

We report the most frequent species and serovars of enteropathogenic organisms in Rosario from 1985 to 1993. Enteropathogenic Escherichia coli was the most prevalent agent affecting 144/570 (25.2%) children; 0111 represented 41.8%, 055: 13.6%, 0119: 12.7%. Among enterotoxigenic E. coli (ETEC) the most frequent were ETEC-ST 0128:H21 and 0153:H45. Shigella spp were isolated in 8.8%; S.flexneri: 7%, principally type 2 (59.5%); S. sonnei: 1.6%, and S. dysenteriae type 2: 0.2%. Campylobacter spp were found in 6.1% of patients; C.jejuni: 4.6%; C. coli: 1.4% and C. lari: 0.2%; except groups 0 13,50 and 0 4 (2 cases each), no predominant serogroups were found. Salmonella was isolated in 2.8% of cases, being the predominant serovar S. typhimurium until 1986, but a dramatically increase of cases due to S. enteritidis was observed since 1987. There was 1.9% of Aeromonas spp and 2 cases due to Vibrio cholerae non 0-1. No Yersinia was found. In patients with gastroenteritis due to Shigella, Campylobacter, Salmonella, or EPEC as the unique pathogen, leukocytes were observed in the faeces in 70%, 50%, 20%, and 10% of cases respectively.


2000 ◽  
Vol 182 (10) ◽  
pp. 2937-2944 ◽  
Author(s):  
Sophie Vimont ◽  
Patrick Berche

ABSTRACT Vibrio cholerae, the agent of cholera, is a normal inhabitant of aquatic environments, in which it survives under a wide range of conditions of pH and salinity. In this work, we identified thenhaA gene in a wild-type epidemic strain of V. cholerae O1. nhaA encodes a protein of 382 amino acids that is very similar to the proteins NhaA of Vibrio parahaemolyticus, Vibrio alginolyticus (∼87% identity), and Escherichia coli (56% identity). V. cholerae NhaA complements an E. coli nhaA mutant, enabling it to grow in 700 mM NaCl, pH 7.5, indicating functional homology to E. coli NhaA. However, unlike E. coli, the growth of a nhaA-inactivated mutant ofV. cholerae was not restricted at various pH and NaCl concentrations, although it was inhibited in the presence of 120 mM LiCl at pH 8.5. Nevertheless, using a nhaA′-lacZtranscriptional fusion, we observed induction of nhaAtranscription by Na+, Li+, and K+. These results strongly suggest that NhaA is an Na+/H+ antiporter contributing to the Na+/H+ homeostasis of V. cholerae. nhaA-related sequences were detected in all strains ofV. cholerae from the various serogroups. This gene is presumably involved in the survival and persistence of free-living bacteria in their natural habitat.


2016 ◽  
Vol 85 (1) ◽  
Author(s):  
Amanda J. Hay ◽  
Menghua Yang ◽  
Xiaoyun Xia ◽  
Zhi Liu ◽  
Justin Hammons ◽  
...  

ABSTRACT Vibrio cholerae is the causative bacteria of the diarrheal disease cholera, but it also persists in aquatic environments, where it displays an expression profile that is distinct from that during infection. Upon entry into the host, a tightly regulated circuit coordinates the induction of two major virulence factors: cholera toxin and a toxin-coregulated pilus (TCP). It has been shown that a set of bile salts, including taurocholate, serve as host signals to activate V. cholerae virulence through inducing the activity of the transmembrane virulence regulator TcpP. In this study, we investigated the role of calcium, an abundant mental ion in the gut, in the regulation of virulence. We show that whereas Ca2+ alone does not affect virulence, Ca2+ enhances bile salt-dependent virulence activation for V. cholerae. The induction of TCP by murine intestinal contents is counteracted when Ca2+ is depleted by the high-affinity calcium chelator EGTA, suggesting that the calcium present in the gut is a relevant signal for V. cholerae virulence induction in vivo. We further show that Ca2+ enhances virulence by promoting bile salt-induced TcpP-TcpP interaction. Moreover, fluorescence recovery after photobleaching (FRAP) analysis demonstrated that exposure to bile salts and Ca2+ together decreases the recovery rate for fluorescently labeled TcpP, but not for another inner membrane protein (TatA). Together, these data support a model in which physiological levels of Ca2+ may result in altered bile salt-induced TcpP protein movement and activity, ultimately leading to an increased expression of virulence.


1990 ◽  
Vol 68 (1) ◽  
pp. 123-137 ◽  
Author(s):  
Krishna G. Peri ◽  
Hughes Goldie ◽  
E. Bruce Waygood

Three enzymes are required for N-acetylglucosamine (NAG) utilization in Escherichia coli: enzyme IInag (gene nagE), N-acetylglucosamine-6-phosphate deacetylase (gene nagA), and glucosamine-6-phosphate isomerase (gene nagB). The three genes are located near 16 min on the E. coli chromosome. A strain of E. coli, KPN9, incapable of utilizing N-acetylglucosamine, was used to screen a genomic library of E. coli for a complementing recombinant colicin E1 plasmid that allowed for growth on N-acetylglucosamine. Plasmid pLC5-21 was found to contain all three known nag genes on a 5.7-kilobase (5.7-kb) fragment of DNA. The products of these nag genes were identified by complementation of E. coli strains with mutations in nagA, nagB, and nagE. The gene products from the 5.7-kb fragment were identified by [35S]methionine-labelled maxicells and autoradiography of sodium dodecyl sulphate – polyacrylamide electrophoresis gels. The gene products had the following relative masses (Mrs: nagE, 62 000; nagA, 45 000; nagB, 29 000. In addition, another product of Mr 44 000 was detected. The genes have been sequenced to reveal an additional open reading frame (nagC), a putative catabolite activator protein binding site that may control nagB and nagE, putative rho-independent terminator sites for nagB and nagE, and sequence homologies for RNA polymerase binding sites preceding each of the open reading frames, except for nagA. The calculated molecular weights (MWs) of the gene products derived from the sequence are as follows: nagA, 40 954; nagB, 29 657; nagC, 44 664; nagE, 68 356. No role is known for nagC, although a number of regulatory roles appear to be plausible. No obvious transcriptional termination site distal to nagC was found and another open reading frame begins after nagC. This gene, nagD, was isolated separately from pLC5-21, and the sequence revealed a protein with a calculated MW of 27 181. The nagD gene is followed by repetitive extragenic palindromic sequences. The nag genes appear to be organized in an operon: [Formula: see text]Key words: N-acetylglucosamine, N-acetylglucosamine-6-P deacetylase, glucosamine-6-P isomerase, repetitive extragenic palindromic sequences, catabolite repression.


2020 ◽  
Author(s):  
Stefan L Nordqvist ◽  
Kaisa Thorell ◽  
Frida Nilsson ◽  
Madeleine Löfstrand ◽  
Arvid Hagelberg ◽  
...  

AbstractOf over 200 different identified Vibrio cholerae serogroups only the O1 serogroup is consistently associated with endemic and epidemic cholera disease. The O1 serogroup has two serologically distinguishable variants, the Ogawa and Inaba serotypes, which differ only by a methyl group present on the terminal sugar of the Ogawa O-antigen but absent from Inaba strains. This methylation is catalyzed by a methyltransferase encoded by the wbeT gene, which in Inaba strains is disrupted by mutation. It is currently thought that there is little difference between the two serotypes. However, here we show, using isogenic pairs of O1 El Tor V. cholerae, that Inaba strains show significantly different patterns of gene expression and are significantly less able than the corresponding Ogawa strains to cause cholera in an infant mouse infection model. Our results suggest that changes in gene expression resulting from the loss of the wbeT gene lead to reduced virulence and possibly also reduced survival fitness outside the human host.Author SummaryThe bacterium Vibrio cholerae causes the pandemic diarrheal disease cholera. Despite many identified serotypes of V. cholerae only one, O1, causes pandemic cholera. The O1 serotype of pandemic V. cholerae has two distinguishable variants (called Ogawa and Inaba) long considered to be clinically and epidemiologically equivalent. Cholera outbreaks consist only of one the two variants at any time. In general, Ogawa strains cause the majority of outbreaks with relatively short-lived Inaba outbreaks occurring sporadically. We have suggested earlier that Inaba outbreaks occur during periods of environmental selective pressure against the Ogawa serotype. We demonstrate here that the two variants are not clinically equivalent. The Ogawa serotype is better able to respond to infection in an animal model by up regulating the expression of virulence genes essential for disease development. We suggest that this phenomenon is the result of wider ranging differences in gene expression resulting from the mutation that converts Ogawa into Inaba strains, and may help to explain the dominance of the Ogawa serotype in nature.


2013 ◽  
Vol 79 (15) ◽  
pp. 4675-4683 ◽  
Author(s):  
Patrick Ymele-Leki ◽  
Laetitia Houot ◽  
Paula I. Watnick

ABSTRACTVibrio choleraeis a halophilic, Gram-negative rod found in marine environments. Strains that produce cholera toxin cause the diarrheal disease cholera.V. choleraeuse a highly conserved, multicomponent signal transduction cascade known as the phosphoenolpyruvate phosphotransferase system (PTS) to regulate carbohydrate uptake and biofilm formation. Regulation of biofilm formation by the PTS is complex, involving many different regulatory pathways that incorporate distinct PTS components. The PTS consists of the general components enzyme I (EI) and histidine protein (HPr) and carbohydrate-specific enzymes II. Mannitol transport byV. choleraerequires the mannitol-specific EII (EIIMtl), which is expressed only in the presence of mannitol. Here we show that mannitol activatesV. choleraebiofilm formation and transcription of thevpsbiofilm matrix exopolysaccharide synthesis genes. This regulation is dependent on mannitol transport. However, we show that, in the absence of mannitol, ectopic expression of the B subunit of EIIMtlis sufficient to activate biofilm accumulation. Mannitol, a common compatible solute and osmoprotectant of marine organisms, is a main photosynthetic product of many algae and is secreted by algal mats. We propose that the ability ofV. choleraeto respond to environmental mannitol by forming a biofilm may play an important role in habitat selection.


Sign in / Sign up

Export Citation Format

Share Document