scholarly journals Burkholderia pseudomallei Isocitrate Lyase Is a Persistence Factor in Pulmonary Melioidosis: Implications for the Development of Isocitrate Lyase Inhibitors as Novel Antimicrobials

2009 ◽  
Vol 77 (10) ◽  
pp. 4275-4283 ◽  
Author(s):  
Erin J. van Schaik ◽  
Marina Tom ◽  
Donald E. Woods

ABSTRACT Burkholderia pseudomallei, the causative agent of melioidosis, has often been called the great “mimicker,” and clinical disease due to this organism may include acute, chronic, and latent pulmonary infections. Interestingly, chronic pulmonary melioidosis is often mistaken for tuberculosis, and this can have significant consequences, as the treatments for these two infections are radically different. The recurrent misdiagnosis of melioidosis for tuberculosis has caused many to speculate that these two bacterial pathogens use similar pathways to produce latent infections. Here we show that isocitrate lyase is a persistence factor for B. pseudomallei, and inhibiting the activity of this enzyme during experimental chronic B. pseudomallei lung infection forces the infection into an acute state, which can then be treated with antibiotics. We found that if antibiotics are not provided in combination with isocitrate lyase inhibitors, the resulting B. pseudomallei infection overwhelms the host, resulting in death. These results suggest that the inhibition of isocitrate lyase activity does not necessarily attenuate virulence as previously observed for Mycobacterium tuberculosis infections but does force the bacteria into a replicating state where antibiotics are effective. Therefore, isocitrate lyase inhibitors could be developed for chronic B. pseudomallei infections but only for use in combination with effective antibiotics.

Author(s):  
I. V. Bakshtanovskaya ◽  
T. F. Stepanova ◽  
G. V. Sharukho ◽  
A. N. Letyushev ◽  
K. B. Stepanova ◽  
...  

The aim of this work was to identify the causative agent of community-acquired pneumonia and coinfection using PCR study of biomaterial from patients.Materials and methods. PCR testing of 268 samples from 258 patients was carried out to identify RNA/DNA of viral and bacterial pathogens of respiratory infections.Results and discussion. In 43.3 % of samples SARS-CoV-2 RNA was detected, in 4.5 % – RNA/DNA of acute respiratory viral infections pathogens, in one sample – DNA of Mycoplasma pneumoniae. Co-infection was detected only in patients of the anti-tuberculosis dispensary (SARS-CoV-2 and Mycobacterium tuberculosis). In the examined patients with pneumonia, SARS-CoV-2 RNA was significantly more often detected in biomaterial from the lower respiratory tract (52 %) than in respiratory smears (8.5 %). In the first week from the onset of the disease, 19.2 % of positive samples were found, in the second – 56.5 %. 


Microbiology ◽  
2010 ◽  
Vol 156 (4) ◽  
pp. 1201-1210 ◽  
Author(s):  
Jessica M. Hagins ◽  
Jessica A. Scoffield ◽  
Sang-Jin Suh ◽  
Laura Silo-Suh

Pseudomonas aeruginosa is the major aetiological agent of chronic pulmonary infections in patients with cystic fibrosis (CF). The metabolic pathways utilized by P. aeruginosa during these infections, which can persist for decades, are poorly understood. Several lines of evidence suggest that the glyoxylate pathway, which utilizes acetate or fatty acids to replenish intermediates of the tricarboxylic acid cycle, is an important metabolic pathway for P. aeruginosa adapted to the CF lung. Isocitrate lyase (ICL) is one of two major enzymes of the glyoxylate pathway. In a previous study, we determined that P. aeruginosa is dependent upon aceA, which encodes ICL, to cause disease on alfalfa seedlings and in rat lungs. Expression of aceA in PAO1, a P. aeruginosa isolate associated with acute infection, is regulated by carbon sources that utilize the glyoxyate pathway. In contrast, expression of aceA in FRD1, a CF isolate, is constitutively upregulated. Moreover, this deregulation of aceA occurs in other P. aeruginosa isolates associated with chronic infection, suggesting that high ICL activity facilitates adaptation of P. aeruginosa to the CF lung. Complementation of FRD1 with a PAO1 clone bank identified that rpoN negatively regulates aceA. However, the deregulation of aceA in FRD1 was not due to a knockout mutation of rpoN. Regulation of the glyoxylate pathway by RpoN is likely to be indirect, and represents a unique regulatory role for this sigma factor in bacterial metabolism.


1983 ◽  
Vol 66 (6) ◽  
pp. 1232-1236 ◽  
Author(s):  
M.C. Albizzatti de Rivadeneira ◽  
M.C. Manca de Nadra ◽  
A.A. Pesce de Ruiz Holgado ◽  
G. Oliver

2011 ◽  
Vol 7 (12) ◽  
pp. e1002452 ◽  
Author(s):  
Ivonne Ceballos-Olvera ◽  
Manoranjan Sahoo ◽  
Mark A. Miller ◽  
Laura del Barrio ◽  
Fabio Re

1978 ◽  
Vol 24 (2) ◽  
pp. 149-153 ◽  
Author(s):  
T. M. Lakshmi ◽  
Robert B. Helling

Levels of several intermediary metabolites were measured in cells grown in acetate medium in order to test the hypothesis that the glyoxylate cycle is repressed by phosphoenolpyruvate (PEP). Wild-type cells had less PEP than either isocitrate dehydrogenase – deficient cells (which had greater isocitrate lyase activity than the wild type) or isocitrate dehydrogenase – deficient, citrate synthase – deficient cells (which are poorly inducible). Thus induction of the glyoxylate cycle is more complicated than a simple function of PEP concentration. No correlation between enzyme activity and the level of oxaloacetate, pyruvate, or citrate was found either. Citrate was synthesized in citrate synthase – deficient mutants, possibly via citrate lyase.


2015 ◽  
Vol 3 (4) ◽  
Author(s):  
Chiranjay Mukhopadhyay ◽  
K. E. Vandana ◽  
T. A. K. Chaitanya ◽  
Tushar Shaw ◽  
H. Vinod Bhat ◽  
...  

Here, we report the draft genome sequence of Burkholderia pseudomallei CM_Manipal, the causative agent of melioidosis isolated from a diabetic patient in Manipal, southern India. The draft genome consists of 107 contigs and is 7,209,157 bp long. A total of 5,600 coding sequences (CDSs), 60 tRNAs, 12 rRNAs, and one noncoding RNA (ncRNA) were predicted from this assembly.


mBio ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Avishek Mitra ◽  
Alexander Speer ◽  
Kan Lin ◽  
Sabine Ehrt ◽  
Michael Niederweis

ABSTRACT Iron is essential for replication of Mycobacterium tuberculosis, but iron is efficiently sequestered in the human host during infection. Heme constitutes the largest iron reservoir in the human body and is utilized by many bacterial pathogens as an iron source. While heme acquisition is well studied in other bacterial pathogens, little is known in M. tuberculosis. To identify proteins involved in heme utilization by M. tuberculosis, a transposon mutant library was screened for resistance to the toxic heme analog gallium(III)-porphyrin (Ga-PIX). Inactivation of the ppe36, ppe62, and rv0265c genes resulted in resistance to Ga-PIX. Growth experiments using isogenic M. tuberculosis deletion mutants showed that PPE36 is essential for heme utilization by M. tuberculosis, while the functions of PPE62 and Rv0265c are partially redundant. None of the genes restored growth of the heterologous M. tuberculosis mutants, indicating that the proteins encoded by the genes have separate functions. PPE36, PPE62, and Rv0265c bind heme as shown by surface plasmon resonance spectroscopy and are associated with membranes. Both PPE36 and PPE62 proteins are cell surface accessible, while the Rv0265c protein is probably located in the periplasm. PPE36 and PPE62 are, to our knowledge, the first proline-proline-glutamate (PPE) proteins of M. tuberculosis that bind small molecules and are involved in nutrient acquisition. The absence of a virulence defect of the ppe36 deletion mutant indicates that the different iron acquisition pathways of M. tuberculosis may substitute for each other during growth and persistence in mice. The emerging model of heme utilization by M. tuberculosis as derived from this study is substantially different from those of other bacteria. IMPORTANCE Tuberculosis is caused by Mycobacterium tuberculosis and is a devastating disease affecting eight million people each year. Iron is an essential nutrient for replication of M. tuberculosis in the human host. More than 70% of iron in the human body is bound in heme. Not surprisingly, many bacterial pathogens, including M. tuberculosis, are able to acquire iron from heme. However, the mechanism of heme uptake by M. tuberculosis is poorly understood. We have identified two novel surface proteins that bind heme and are required for heme utilization by M. tuberculosis. These findings constitute a major advancement of our understanding of iron acquisition by M. tuberculosis and show that M. tuberculosis has evolved heme uptake systems different from the paradigms established by other bacteria. IMPORTANCE Tuberculosis is caused by Mycobacterium tuberculosis and is a devastating disease affecting eight million people each year. Iron is an essential nutrient for replication of M. tuberculosis in the human host. More than 70% of iron in the human body is bound in heme. Not surprisingly, many bacterial pathogens, including M. tuberculosis, are able to acquire iron from heme. However, the mechanism of heme uptake by M. tuberculosis is poorly understood. We have identified two novel surface proteins that bind heme and are required for heme utilization by M. tuberculosis. These findings constitute a major advancement of our understanding of iron acquisition by M. tuberculosis and show that M. tuberculosis has evolved heme uptake systems different from the paradigms established by other bacteria.


Author(s):  
Irina Alexandrovna Ratnikova ◽  
Amankeldi Kurbanovich Sadanov ◽  
Nina Nicolaevna Gavrilova ◽  
Saltanat Emilkyzy Orazymbet ◽  
Raushan Zhumabekkyzy Kaptagai

The article describes selection of medicinal plants active against multidrug-resistant strain of tuberculosis causative agent. It has been discovered that all tested extracts of medicinal plants in 1:20 dilutions were active regarding multidrug-resistant strain of Mycobacterium tuberculosis T-320 except for hackberry aqueous extract. The most active was alcohol extract of parmelia, which completely suppressed growth of mycobacteria in 1:100 dilution on the 21st day of cultivation.


Weed Science ◽  
1970 ◽  
Vol 18 (5) ◽  
pp. 565-571
Author(s):  
J. A. Mulliken ◽  
C. A. Kust ◽  
L. E. Schrader

Endosperm dry weight, protein, and fat losses accompanied rapid radicle growth of velvetleaf (Abutilon theophrasti Medic.) between 12 and 36 hr of germination at 31 C. Cotyledonary reserves were mobilized after 36 hr. Isocitrate lyase activity sedimented with a particulate fraction in varying degrees, but maximal activity developed at times coincident with fat mobilization. Respiration of excised endosperms reached maximal rates shortly after radicle emergence. The actions of hydrogen cyanide, carbon monoxide, and 2,4-dinitrolphenol indicated that respiration of endosperms excised from imbibed and germinated seed was due to cytochrome oxidase activity, and was coupled to phosphorylation.


Sign in / Sign up

Export Citation Format

Share Document