scholarly journals Leishmania amazonensis Amastigotes Trigger Neutrophil Activation but Resist Neutrophil Microbicidal Mechanisms

2013 ◽  
Vol 81 (11) ◽  
pp. 3966-3974 ◽  
Author(s):  
Eric D. Carlsen ◽  
Christie Hay ◽  
Calvin A. Henard ◽  
Vsevolod Popov ◽  
Nisha Jain Garg ◽  
...  

ABSTRACTNeutrophils are the first cells to infiltrate to the site ofLeishmaniapromastigote infection, and these cells help to reduce parasite burden shortly after infection is initiated. Several clinical reports indicate that neutrophil recruitment is sustained over the course of leishmaniasis, and amastigote-laden neutrophils have been isolated from chronically infected patients and experimentally infected animals. The goal of this study was to compare how thioglycolate-elicited murine neutrophils respond toL. amazonensismetacyclic promastigotes and amastigotes derived from axenic cultures or from the lesions of infected mice. Neutrophils efficiently internalized both amastigote and promastigote forms of the parasite, and phagocytosis was enhanced in lipopolysaccharide (LPS)-activated neutrophils or when parasites were opsonized in serum from infected mice. Parasite uptake resulted in neutrophil activation, oxidative burst, and accelerated neutrophil death. While promastigotes triggered the release of tumor necrosis factor alpha (TNF-α), uptake of amastigotes preferentially resulted in the secretion of interleukin-10 (IL-10) from neutrophils. Finally, the majority of promastigotes were killed by neutrophils, while axenic culture- and lesion-derived amastigotes were highly resistant to neutrophil microbicidal mechanisms. This study indicates that neutrophils exhibit distinct responses to promastigote and amastigote infection. Our findings have important implications for determining the impact of sustained neutrophil recruitment and amastigote-neutrophil interactions during the late phase of cutaneous leishmaniasis.

2017 ◽  
Vol 85 (4) ◽  
Author(s):  
Joseph Pierce Sullivan ◽  
Nisha Nair ◽  
Hari-Hara Potula ◽  
Maria Gomes-Solecki

ABSTRACT Leptospirosis is potentially a fatal zoonosis acquired by contact of skin and mucosal surfaces with soil and water contaminated with infected urine. We analyzed the outcome of infection of C3H/HeJ mice with Leptospira interrogans serovar Copenhageni using an enzootic mode of transmission, the conjunctival route. Infection led to weight loss and L. interrogans dissemination from blood to urine, and spirochetes were detected in blood and urine simultaneously. The infectious dose that led to consistent dissemination to kidney after conjunctival infection was ∼108 leptospires. Interestingly, a lower number of spirochetes appeared to colonize the kidney, given that we quantified ∼105 and ∼10 leptospires per μl of urine and per μg of kidney, respectively. Leptospira-specific IgM and IgG were detected at 15 days postinfection, and isotyping of the Ig subclass showed that the total IgG response switched from an IgG1 response to an IgG3 response after infection with L. interrogans. Histological periodic acid-Schiff D staining of infected kidney showed interstitial nephritis, mononuclear cell infiltrates, and reduced size of glomeruli. Quantification of proinflammatory immunomediators in kidney showed that keratinocyte-derived chemokine, macrophage inflammatory protein 2, RANTES, tumor necrosis factor alpha, gamma interferon, and interleukin-10 were upregulated in infected mice. We show that the kinetics of disease progression after infection via the ocular conjunctiva is delayed compared with infection via the standard intraperitoneal route. Differences may be related to the number of L. interrogans spirochetes that succeed in overcoming the natural defenses of the ocular conjunctiva and transit through tissue.


2018 ◽  
Vol 86 (6) ◽  
Author(s):  
Janette M. Shank ◽  
Brittni R. Kelley ◽  
Joseph W. Jackson ◽  
Jessica L. Tweedie ◽  
Dana Franklin ◽  
...  

ABSTRACTCampylobacter jejuniis a leading cause of bacterially derived gastroenteritis worldwide.Campylobacteris most commonly acquired through the consumption of undercooked poultry meat or through drinking contaminated water. Following ingestion,Campylobacteradheres to the intestinal epithelium and mucus layer, causing toxin-mediated inflammation and inhibition of fluid reabsorption. Currently, the human response to infection is relatively unknown, and animal hosts that model these responses are rare. As such, we examined patient fecal samples for the accumulation of the neutrophil protein calgranulin C during infection withCampylobacter jejuni. In response to infection, calgranulin C was significantly increased in the feces of humans. To determine whether calgranulin C accumulation occurs in an animal model, we examined disease in ferrets. Ferrets were effectively infected byC. jejuni, with peak fecal loads observed at day 3 postinfection and full resolution by day 12. Serum levels of interleukin-10 (IL-10) and tumor necrosis factor alpha (TNF-α) significantly increased in response to infection, which resulted in leukocyte trafficking to the colon. As a result, calgranulin C increased in the feces of ferrets at the time whenC. jejuniloads decreased. Further, the addition of purified calgranulin C toC. jejunicultures was found to inhibit growth in a zinc-dependent manner. These results suggest that upon infection withC. jejuni, leukocytes trafficked to the intestine release calgranulin C as a mechanism for inhibitingC. jejunigrowth.


2018 ◽  
Vol 86 (6) ◽  
Author(s):  
Samar Habib ◽  
Abdeljabar El Andaloussi ◽  
Khaled Elmasry ◽  
Aya Handoussa ◽  
Manar Azab ◽  
...  

ABSTRACT Leishmania donovani is a causative pathogen of potentially fatal visceral leishmaniasis (VL). Therapeutic agents are available; however, their use is limited because of high cost, serious side effects, and development of antimicrobial resistance. Protective immunity against VL depends on CD4 + Th1 cell-mediated immunity. Studies have shown that progression of VL is due to exhaustion of T cells; however, the mechanism involved is not clearly understood. Here, we examined the role of PD1/PDL-1 in the pathogenesis of VL by using a murine model of VL. Our data indicate that L. donovani is able to elicit initial expansion of gamma interferon-producing CD4 + Th1 and CD8 + T cells at day 7 postinfection (p.i.); however, the frequency of those cells and inflammatory response decreased at day 21 p.i., despite persistence of parasites. Persistent infection-induced expansion of interleukin-10 + FOXP3 + Treg and CD4 + and CD8 + T cells expressing PD1. Blocking of PDL-1 signaling in vivo resulted in restoration of protective type 1 responses by both CD4 + and CD8 + T cells, which resulted in a significant decrease in the parasite burden. Mechanistically, PDL-1 blocking inhibited autophagy, a cellular degradation process hijacked by Leishmania to acquire host cell nutrients for their survival. Inhibition of autophagy was marked by decreased lipidation of microtubule-associated protein 1 light chain 3, a marker of autophagosome formation, and P62 accumulation. Together, our findings show for the first time that anti-PDL-1 antibody is an effective therapeutic approach for restoration of effector arms of protective immunity against VL and subsequent parasite clearance.


2020 ◽  
Vol 88 (8) ◽  
Author(s):  
Giorgio Mattiuz ◽  
Sabrina Nicolò ◽  
Alberto Antonelli ◽  
Tommaso Giani ◽  
Ilaria Baccani ◽  
...  

ABSTRACT MCR-1 is a plasmid-encoded phosphoethanolamine transferase able to modify the lipid A structure. It confers resistance to colistin and was isolated from human, animal, and environmental strains of Enterobacteriaceae, raising serious global health concerns. In this paper, we used recombinant mcr-1-expressing Escherichia coli to study the impact of MCR-1 products on E. coli-induced activation of inflammatory pathways in activated THP-1 cells, which was used as a model of human macrophages. We found that infection with recombinant mcr-1-expressing E. coli significantly modulated p38-MAPK and Jun N-terminal protein kinase (JNK) activation and pNF-κB nuclear translocation as well as the expression of genes for the relevant proinflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin-12 (IL-12), and IL-1β compared with mcr-1-negative strains. Caspase-1 activity and IL-1β secretion were significantly less activated by mcr-1-positive E. coli strains than the mcr-1-negative parental strain. Similar results were obtained with clinical isolates of mcr-1-positive E. coli, suggesting that, in addition to colistin resistance, the expression of mcr-1 allows the escape of early host innate defenses and may promote bacterial survival.


2017 ◽  
Vol 85 (9) ◽  
Author(s):  
Maki Nishimura ◽  
Kousuke Umeda ◽  
Masayuki Suwa ◽  
Hidefumi Furuoka ◽  
Yoshifumi Nishikawa

ABSTRACT Toxoplasmosis can cause abortion in pregnant humans and other animals; however, the mechanism of abortion remains unknown. C-C chemokine receptor type 5 (CCR5) is essential for host defense against Toxoplasma gondii infection. To investigate the relationship between CCR5 and abortion in toxoplasmosis, we inoculated wild-type and CCR5-deficient (CCR5−/−) mice with T. gondii tachyzoites intraperitoneally on day 3 of pregnancy (embryonic day 3 [E3]). The pregnancy rate decreased as pregnancy progressed in infected wild-type mice. Histopathologically, no inflammatory lesions were observed in the fetoplacental tissues. Although wild-type mice showed a higher parasite burden at the implantation sites than did CCR5−/− mice at E6 (3 days postinfection [dpi]), T. gondii antigen was detected only in the uterine tissue and not in the fetoplacental tissues. At E8 (5 dpi), the embryos in infected wild-type mice showed poor development compared with those of infected CCR5−/− mice, and apoptosis was observed in poorly developed embryos. Compared to uninfected mice, infected wild-type mice showed increased CCR5 expression at the implantation site at E6 and E8. Furthermore, analyses of mRNA expression in the uterus of nonpregnant and pregnant mice suggested that a lack of the CCR5 gene and the downregulation of tumor necrosis factor alpha (TNF-α) and CCL3 expression at E6 (3 dpi) are important factors for the maintenance of pregnancy following T. gondii infection. These results suggested that CCR5 signaling is involved in embryo loss in T. gondii infection during early pregnancy and that apoptosis is associated with embryo loss rather than direct damage to the fetoplacental tissues.


2011 ◽  
Vol 79 (5) ◽  
pp. 2112-2119 ◽  
Author(s):  
Anne-Danielle C. Chessler ◽  
Kacey L. Caradonna ◽  
Akram Da'dara ◽  
Barbara A. Burleigh

ABSTRACTTrypanosoma cruzi, the protozoan parasite that causes human Chagas' disease, induces a type I interferon (IFN) (IFN-α/β) response during acute experimental infection in mice and in isolated primary cell types. To examine the potential impact of the type I IFN response in shaping outcomes in experimentalT. cruziinfection, groups of wild-type (WT) and type I IFN receptor-deficient (IFNAR−/−) 129sv/ev mice were infected with two differentT. cruzistrains under lethal and sublethal conditions and several parameters were measured during the acute stage of infection. The results demonstrate that type I IFNs are not required for early host protection againstT. cruzi. In contrast, under conditions of lethalT. cruzichallenge, WT mice succumbed to infection whereas IFNAR−/−mice were ultimately able to control parasite growth and survive.T. cruziclearance in and survival of IFNAR−/−mice were accompanied by higher levels of IFN-γ production by isolated splenocytes in response to parasite antigen. The suppression of IFN-γ in splenocytes from WT mice was independent of IL-10 levels. While the impact of type I IFNs on the production of IFN-γ and other cytokines/chemokines remains to be fully determined in the context ofT. cruziinfection, our data suggest that, under conditions of high parasite burden, type I IFNs negatively impact IFN-γ production, initiating a detrimental cycle that contributes to the ultimate failure to control infection. These findings are consistent with a growing theme in the microbial pathogenesis field in which type I IFNs can be detrimental to the host in a variety of nonviral pathogen infection models.


2010 ◽  
Vol 59 (8) ◽  
pp. 913-919 ◽  
Author(s):  
Ayaid Khadem Zgair ◽  
Sanjay Chhibber

Intranasal (i.n.) instillation of different amounts of purified Stenotrophomonas maltophilia flagellin preparation (1, 5 and 15 μg) in BALB/c mice stimulated a transient innate immune response in the lungs. This was characterized by infiltration of different kinds of leukocytes (neutrophils, monocytes and lymphocytes), production of various inflammatory mediators (tumour necrosis factor alpha, interleukin 1 beta, interleukin 10, nitric oxide, myeloperoxidase and malondialdehyde) and activated alveolar macrophages (AMs). The proinflammatory cytokine production resulted in accumulation of activated neutrophils and macrophages and their products following immunostimulation with flagellin. The activation of AMs by flagellin was non-specific as AMs obtained from flagellin-treated animals, even after 4 h of exposure, were found to engulf and kill S. maltophilia and Staphylococcus aureus efficiently compared to macrophages obtained from control animals. i.n. instillation of 5 μg flagellin resulted in the generation of an effective innate immunity compared to other flagellin doses. Our data provide strong evidence that S. maltophilia flagellin stimulates innate immunity in mouse lung.


2016 ◽  
Vol 23 (4) ◽  
pp. 282-293 ◽  
Author(s):  
Vijaya Satchidanandam ◽  
Naveen Kumar ◽  
Sunetra Biswas ◽  
Rajiv S. Jumani ◽  
Chandni Jain ◽  
...  

ABSTRACTWe previously reported that Rv1860 protein fromMycobacterium tuberculosisstimulated CD4+and CD8+T cells secreting gamma interferon (IFN-γ) in healthy purified protein derivative (PPD)-positive individuals and protected guinea pigs immunized with a DNA vaccine and a recombinant poxvirus expressing Rv1860 from a challenge with virulentM. tuberculosis. We now show Rv1860-specific polyfunctional T (PFT) cell responses in the blood of healthy latentlyM. tuberculosis-infected individuals dominated by CD8+T cells, using a panel of 32 overlapping peptides spanning the length of Rv1860. Multiple subsets of CD8+PFT cells were significantly more numerous in healthy latently infected volunteers (HV) than in tuberculosis (TB) patients (PAT). The responses of peripheral blood mononuclear cells (PBMC) from PAT to the peptides of Rv1860 were dominated by tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) secretions, the former coming predominantly from non-T cell sources. Notably, the pattern of the T cell response to Rv1860 was distinctly different from those of the widely studiedM. tuberculosisantigens ESAT-6, CFP-10, Ag85A, and Ag85B, which elicited CD4+T cell-dominated responses as previously reported in other cohorts. We further identified a peptide spanning amino acids 21 to 39 of the Rv1860 protein with the potential to distinguish latent TB infection from disease due to its ability to stimulate differential cytokine signatures in HV and PAT. We suggest that a TB vaccine carrying these and other CD8+T-cell-stimulating antigens has the potential to prevent progression of latentM. tuberculosisinfection to TB disease.


2016 ◽  
Vol 84 (12) ◽  
pp. 3350-3357 ◽  
Author(s):  
Wenlong Zhang ◽  
Naisheng Zhang ◽  
Xufeng Xie ◽  
Jian Guo ◽  
Xuemin Jin ◽  
...  

Leptospirosis, caused by pathogenic spirochetes, is a zoonotic disease of global importance. The detailed pathogenesis of leptospirosis is still unclear, which limits the ideal treatment of leptospirosis. In this study, we analyzed the expression of Toll-like receptor 2 (TLR2) and TLR4 in target organs of both resistant mice and susceptible hamsters after Leptospira interrogans serovar Autumnalis infection. TLR2 but not TLR4 transcripts in mouse organs contrasted with delayed induction and overexpression in hamster organs. Coinjection of leptospires and the TLR2 agonist Pam3CSK4 into hamsters improved their survival rate, alleviated tissue injury, and decreased the abundance of leptospires in target organs. The production of interleukin-10 (IL-10) from tissues was enhanced in hamsters of the group coinjected with leptospires and Pam3CSK4 compared with the leptospira-injected group. Similarly, IL-10 levels in TLR2-deficient mice were lower than those in wild-type mice. A high ratio of IL-10/tumor necrosis factor alpha (TNF-α) levels was found in both infected wild-type mice and hamsters coinjected with leptospires and Pam3CSK4. Moreover, TLR2-dependent IL-10 expression was detected in peritoneal macrophages after leptospira infection. Our data demonstrate that coinjection of leptospires and Pam3CSK4 alleviates the pathology of leptospirosis in hamsters; this effect may result from the enhanced expression of TLR2-dependent IL-10.


2012 ◽  
Vol 80 (9) ◽  
pp. 2997-3007 ◽  
Author(s):  
Juliana V. Harris ◽  
Tiffany M. Bohr ◽  
Catherine Stracener ◽  
Mary E. Landmesser ◽  
Vladimir Torres ◽  
...  

ABSTRACTLack of an adequate animal model ofPlasmodium falciparumsevere malarial anemia (SMA) has hampered the understanding of this highly lethal condition. We developed a model of SMA by infecting C57BL/6 mice withP. chabaudifollowed after recovery byP. bergheiinfection.P. chabaudi/P. berghei-infected mice had an initial 9- to 10-day phase of relatively low parasitemia and severe anemia, followed by a second phase of hyperparasitemia, more profound anemia, reticulocytosis, and death 14 to 21 days after infection.P. chabaudi/P. berghei-infected animals had more intense splenic hematopoiesis, higher interleukin-10 (IL-10)/tumor necrosis factor alpha and IL-12/gamma interferon (IFN-γ) ratios, and higher antibody levels againstP. bergheiandP. chabaudiantigens thanP. berghei-infected orP. chabaudi-recovered animals. Early treatment with chloroquine or artesunate did not prevent the anemia, suggesting that the bulk of red cell destruction was not due to the parasite. Red cells fromP. chabaudi/P. berghei-infected animals had increased surface IgG and C3 by flow cytometry. However, C3−/−mice still developed anemia. Tracking of red cells labeledex vivoandin vivoand analysis of frozen tissue sections by immunofluorescence microscopy showed that red cells fromP. chabaudi/P. berghei-infected animals were removed at an accelerated rate in the liver by erythrophagocytosis. This model is practical and reproducible, and its similarities withP. falciparumSMA in humans makes it an appealing system with which to study the pathogenesis of this condition and explore potential immunomodulatory interventions.


Sign in / Sign up

Export Citation Format

Share Document