scholarly journals Human Interleukin-32γ Plays a Protective Role in an Experimental Model of Visceral Leishmaniasis in Mice

2018 ◽  
Vol 86 (5) ◽  
Author(s):  
Rodrigo Saar Gomes ◽  
Muriel Vilela Teodoro Silva ◽  
Jéssica Cristina dos Santos ◽  
Christine van Linge ◽  
Juliana Machado Reis ◽  
...  

ABSTRACTVisceral leishmaniasis (VL) is a chronic parasitic disease caused byLeishmania infantumin the Americas. During VL, several proinflammatory cytokines are produced in spleen, liver, and bone marrow. However, the role of interleukin-32 (IL-32) has not been explored in this disease. IL-32 can induce production of proinflammatory cytokines in innate immune cells and polarize the adaptive immune response. Herein, we discovered thatL. infantumantigens induced expression of mRNA mainly for the IL-32γ isoform but also induced low levels of the IL-32β transcript in human peripheral blood mononuclear cells. Furthermore, infection of human IL-32γ transgenic mice (IL-32γTg mice) withL. infantumpromastigote forms increased IL-32γ expression in the spleen and liver. Interestingly, IL-32γTg mice harbored less parasitism in the spleen and liver than wild-type (WT) mice. In addition, IL-32γTg mice showed increased granuloma formation in the liver compared to WT mice. The protection against VL was associated with increased production of nitric oxide (NO), interferon gamma (IFN-γ), IL-17A, and tumor necrosis factor alpha by splenic cells restimulatedex vivowithL. infantumantigens. In parallel, there was an increase in the number of Th1 and Th17 T cells in the spleens of IL-32γTg mice infected withL. infantum. IL-32γ induction of IFN-γ and IL-17A expression was found to be essential for NO production by splenic cells of infected animals. These data indicate that IL-32γ potentiates the Th1/Th17 immune response during experimental VL, thus contributing to the control ofL. infantuminfection.

2012 ◽  
Vol 19 (11) ◽  
pp. 1889-1893 ◽  
Author(s):  
Kaarina Ranta ◽  
Kaisa Nieminen ◽  
Filip S. Ekholm ◽  
Moniká Poláková ◽  
Mattias U. Roslund ◽  
...  

ABSTRACTImmunostimulatory properties of synthetic structures mimicking the β-(1→2)-linked mannans ofCandida albicanswere evaluatedin vitro. Contrary to earlier observations, tumor necrosis factor (TNF) production was not detected after stimulation with mannotetraose in mouse macrophages. Divalent disaccharide 1,4-bis(α-d-mannopyranosyloxy)butane induced TNF and some molecules induced low levels of gamma interferon (IFN-γ) in human peripheral blood mononuclear cells (PBMC).


2014 ◽  
Vol 21 (4) ◽  
pp. 518-525 ◽  
Author(s):  
Hamid M. Niknam ◽  
Firoozeh Abrishami ◽  
Mohammad Doroudian ◽  
Mosayeb Rostamian ◽  
Maryam Moradi ◽  
...  

ABSTRACTVisceral leishmaniasis is a serious public health problem.Leishmania infantumis one of its causative agents. LCR1 is an immunogen fromL. infantum. Antibodies against this protein have been detected in visceral leishmaniasis patients. The aim of this study was to define the antibody and cellular immune responses against LCR1 in Iranian visceral leishmaniasis patients and recovered individuals. The LCR1 protein was produced in recombinant form. Antibody responses against this protein were studied in Iranian individuals with a recent history of visceral leishmaniasis. Responses of peripheral blood mononuclear cells to this protein were studied in Iranian individuals who had recovered from visceral leishmaniasis. Our data show that (i) there was an antibody response to LCR1 in each individual with a recent history of visceral leishmaniasis studied, (ii) there was neither a proliferative response nor production of gamma interferon (IFN-γ) or interleukin 10 in response to LCR1 by mononuclear cells from individuals who had recovered from visceral leishmaniasis, and (iii) individuals who have recovered from visceral leishmaniasis show ongoing immune responses long after recovery from the disease. These data show that there are no detectable cellular memory responses to LCR1 in Iranian individuals who have recovered from visceral leishmaniasis, while there are detectable antibody responses in patients with this disease. Our data suggest that LCR1 has potential applications for the diagnosis of leishmaniasis through antibody detection, while the application of LCR1 alone for induction of IFN-γ in individuals who recovered from this disease is not supported. The presence of long-lasting immune reactivities in individuals who recovered from the disease may show the necessity of extended medical surveillance for these individuals.


2013 ◽  
Vol 81 (10) ◽  
pp. 3750-3756 ◽  
Author(s):  
Arjan van Laarhoven ◽  
Jornt J. Mandemakers ◽  
Johanneke Kleinnijenhuis ◽  
Mimount Enaimi ◽  
Ekta Lachmandas ◽  
...  

ABSTRACTOne of the most widespread clades ofMycobacterium tuberculosisworldwide, the Beijing genotype family, consists of ancient (atypical) and modern (typical) strains. Modern Beijing strains outcompete ancient strains in terms of prevalence, while reserving a higher degree of genetic conservation. We hypothesize that their selective advantage lies in eliciting a different host immune response. Bead-disrupted lysates of a collection of differentM. tuberculosisstrains of the modern (n= 7) or ancient (n= 7) Beijing genotype, as well as the Euro-American lineage (n= 6), were used for induction ofex vivocytokine production in peripheral blood mononuclear cells (PBMCs) from 10 healthy individuals. Hierarchical clustering and multivariate regression analyses were used to study possible differences in production of nine cytokines. Modern and ancientM. tuberculosisBeijing genotypes induced different cytokine signatures. Overall induction of interleukin-1β (IL-1β), gamma interferon (IFN-γ), and IL-22 was 38 to 40% lower after stimulation with modern Beijing strains (correctedPvalues of <0.0001, 0.0288, and 0.0002, respectively). Euro-American reactivation strains induced 2-fold more TNF-α production than both types of Beijing strains. The observed differences in cytokine induction point to a reduction in proinflammatory cytokine response as a possible contributing factor to the evolutionary success of modern Beijing strains.


Author(s):  
Manu Kupani ◽  
Smriti Sharma ◽  
Rajeev Kumar Pandey ◽  
Rajiv Kumar ◽  
Shyam Sundar ◽  
...  

Nitric oxide (NO) is an anti-microbial effector of the innate immune system which plays major role in non-specific killing of various pathogens including protozoan parasites. However, due to subversion of the host’s immune processes by pathogens, suboptimal production of NO is frequently found in many infection models. Previous studies have shown suppressed NO production during Leishmania donovani infection, the causative agent of visceral leishmaniasis (VL). Availability of L-Arginine, a semi-essential amino acid is required for inducible nitric oxide synthase (iNOS) mediated NO production. However, arginase is another enzyme, which if expressed concomitantly, may strongly compete for L-Arginine, and suppress NO production by iNOS. In the present study, plasma nitrite and arginase levels were measured in VL patients before and after successful drug treatment, endemic and non-endemic healthy donors. We observed significantly lower NO levels in the plasma of VL patients as compared to endemic controls, which improved significantly post-treatment. Significantly elevated arginase activity was also observed in the plasma of VL patients, which may be associated with NO deficiency. VL patients also showed significantly higher levels of IL-10 and TGF-β, which are known to regulate expression of arginase in various immune cells. In vitro studies with human peripheral blood mononuclear cells (PBMCs) further corroborated the role of IL-10 and TGF-β in arginase mediated suppression of NO production.


1997 ◽  
Vol 185 (10) ◽  
pp. 1759-1768 ◽  
Author(s):  
Minghuang Zhang ◽  
Theresa Caragine ◽  
Haichao Wang ◽  
Pamela S. Cohen ◽  
Galina Botchkina ◽  
...  

The local production of proinflammatory cytokines mediates the host response to inflammation, infection, and injury, whereas an overexpression of these mediators can injure or kill the host. Recently, we identified a class of multivalent guanylhydrazone compounds that are effective inhibitors of proinflammatory cytokine synthesis in monocytes/macrophages. The structure of one such cationic molecule suggested a molecular mimicry with spermine, a ubiquitous endogenous biogenic amine that increases significantly at sites of inflammation and infection. Here, we addressed the hypothesis that spermine might counterregulate the innate immune response by downregulating the synthesis of potentially injurious cytokines. When spermine was added to cultures of human peripheral blood mononuclear cells stimulated with lipopolysaccharide (LPS), it effectively inhibited the synthesis of the proinflammatory cytokines tumor necrosis factor (TNF), interleukin-1 (IL-1), IL-6, MIP-1α, and MIP-1β. The inhibition of cytokine synthesis was specific and reversible, with significant inhibition of TNF synthesis occurring even when spermine was added after LPS. The mechanism of spermine-mediated cytokine suppression was posttranscriptional and independent of polyamine oxidase activity. Local administration of spermine in vivo protected mice against the development of acute footpad inflammation induced by carrageenan. These results identify a distinct molecular counterregulatory role for spermine in downregulating the monocyte proinflammatory cytokine response.


1996 ◽  
Vol 183 (3) ◽  
pp. 927-936 ◽  
Author(s):  
M Bianchi ◽  
O Bloom ◽  
T Raabe ◽  
P S Cohen ◽  
J Chesney ◽  
...  

An overproduction of proinflammatory cytokines by activated macrophages/monocytes mediates the injurious sequelae of inflammation, septic shock, tissue injury, and cachexia. We recently synthesized a tetravalent guanylhydrazone compound (CNI-1493) that inhibits cytokine-inducible arginine transport and nitric oxide (NO) production in macrophages, and protects mice against lethal endotoxemia and carrageenan-induced inflammation. During these investigations we noticed that CNI-1493 effectively prevented lipopolysaccharide (LPS)-induced NO production, even when added in concentrations 10-fold less than required to competitively inhibit L-arginine uptake, suggesting that the suppressive effects of this guanylhydrazone compound might extend to other LPS-induced responses. Here, we report that CNI-1493 suppressed the LPS-stimulated production of proinflammatory cytokines (tumor necrosis factor [TNF], interleukins 1beta and 6, macrophage inflammatory proteins 1alpha and 1beta) from human peripheral blood mononuclear cells. Cytokine suppression was specific, in that CNI-1493 did not inhibit either the constitutive synthesis of transforming growth factor beta or the upregulation of major histocompatibility complex class II by interferon gamma (IFN-gamma). In contrast to the macrophage suppressive actions of dexamethasone, which are overridden in the presence of IFN-gamma, CNI-1493 retained its suppressive effects even in the presence of IFN-gamma. The mechanism of cytokine-suppressive action by CNI-1493 was independent of extracellular L-arginine content and NO production and is not restricted to induction by LPS. As a selective inhibitor of macrophage activation that prevents TNF production, this tetravalent guanylhydrazone could be useful in the development of cytokine-suppressive agents for the treatment of diseases mediated by overproduction of cytokines.


2014 ◽  
Vol 22 (3) ◽  
pp. 274-281 ◽  
Author(s):  
Cora N. Pollak ◽  
María Magdalena Wanke ◽  
Silvia M. Estein ◽  
M. Victoria Delpino ◽  
Norma E. Monachesi ◽  
...  

ABSTRACTVirB proteins fromBrucellaspp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice fromBrucellainfection and whether this response can be induced in the dog, a natural host forBrucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with liveBrucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals uponin vitrostimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane ofBrucellaorganisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis ofB. caniswas assessedin vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization byBrucellain mice can be also elicited in dogs.


2018 ◽  
Vol 27 (11) ◽  
pp. 1692-1704
Author(s):  
M. Watanabe ◽  
Makiko Kumagai-Braesch ◽  
M. Yao ◽  
S. Thunberg ◽  
D. Berglund ◽  
...  

Adoptive transfer of alloantigen-specific immunomodulatory cells generated ex vivo with anti-CD80/CD86 mAbs (2D10.4/IT2.2) holds promise for operational tolerance after transplantation. However, good manufacturing practice is required to allow widespread clinical application. Belatacept, a clinically approved cytotoxic T-lymphocyte antigen 4-immunoglobulin that also binds CD80/CD86, could be an alternative agent for 2D10.4/IT2.2. With the goal of generating an optimal cell treatment with clinically approved reagents, we evaluated the donor-specific immunomodulatory effects of belatacept- and 2D10.4/IT2.2-generated immunomodulatory cells. Immunomodulatory cells were generated by coculturing responder human peripheral blood mononuclear cells (PBMCs) (50 × 106 cells) with irradiated donor PBMCs (20 × 106 cells) from eight human leukocyte antigen-mismatched responder–donor pairs in the presence of either 2D10.4/IT2.2 (3 μg/106 cells) or belatacept (40 μg/106 cells). After 14 days of coculture, the frequencies of CD4+ T cells, CD8+ T cells, and natural killer cells as well as interferon gamma (IFN-γ) production in the 2D10.4/IT2.2- and belatacept-treated groups were lower than those in the control group. The percentage of CD19+ B cells was higher in the 2D10.4/IT2.2- and belatacept-treated groups than in the control group. The frequency of CD4+CD25+CD127lowFOXP3+ T cells increased from 4.1±1.0% (preculture) to 7.1±2.6% and 7.3±2.6% (day 14) in the 2D10.4/IT2.2- and belatacept-treated groups, respectively ( p<0.05). Concurrently, delta-2 FOXP3 mRNA expression increased significantly. Compared with cells derived from the no-antibody treated control group, cells generated from both the 2D10.4/IT2.2- and belatacept-treated groups produced lower IFN-γ and higher interleukin-10 levels in response to donor-antigens, as detected by enzyme-linked immunospot. Most importantly, 2D10.4/IT2.2- and belatacept-generated cells effectively impeded the proliferative responses of freshly isolated responder PBMCs against donor-antigens. Our results indicate that belatacept-generated donor-specific immunomodulatory cells possess comparable phenotypes and immunomodulatory efficacies to those generated with 2D10.4/IT2.2. We suggest that belatacept could be used for ex vivo generation of clinical grade alloantigen-specific immunomodulatory cells for tolerance induction after transplantation.


Antibiotics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 573
Author(s):  
Marquerita Algorri ◽  
Annie Wong-Beringer

In Staphylococcus aureus bacteremia, our group has shown that a dysregulated balance of pro- and anti-inflammatory cytokine response biased towards an immunoparalysis phenotype is predictive of persistence and mortality, despite receipt of antibiotics. Certain antibiotics, as well as lipoteichoic acid (LTA) released from S. aureus, can modulate immune response ex vivo. Here, we evaluated the effects of three anti-staphylococcal antibiotics (vancomycin, tedizolid, and daptomycin) on the expression of cytokines and cell surface markers of immune activation (TNFα, HLA-DR) and immunoparalysis (IL-10, PD-L1) in human peripheral blood mononuclear cells (PBMC) exposed to high (10 μg) and low (1 μg) doses of LTA. Results suggested a dose-dependent relationship between LTA and induction of anti- and pro-inflammatory immune responses. Differential antibiotic effects were prominently observed at high but not low LTA condition. Vancomycin significantly induced IL-10 and TNFα expression, whereas daptomycin had no effects on cytokine response or expression of cell surface receptors. Tedizolid increased TNFα and modestly increased HLA-DR expression, suggesting a stimulatory effect. These findings suggest that anti-staphylococcal agents differentially alter LTA-mediated immune cell activation status and cytokine response, providing support for future clinical studies to better elucidate the complexities of host–microbial–antibiotic interaction that can help direct precision therapy for S. aureus bacteremia.


2011 ◽  
Vol 78 (4) ◽  
pp. 956-964 ◽  
Author(s):  
Simone Maccaferri ◽  
Annett Klinder ◽  
Patrizia Brigidi ◽  
Piero Cavina ◽  
Adele Costabile

ABSTRACTConsidering the increase in the consumption of yeasts as human probiotics, the aim of this study was to broadly investigate the beneficial properties of the lactic yeastKluyveromyces marxianus(formerlyKluyveromyces fragilis) B0399. Several potential probiotic traits ofK. marxianusB0399 were investigated by usingin vitroassays, including adhesion and immune modulation, and the effect of the administration of 107CFU/day ofK. marxianusB0399 on the composition and metabolic activity of the human intestinal microbiota was investigated in a 3-stage continuous-culture system simulating the human colon. We demonstrated that this strain was highly adhesive to human enterocyte-like Caco-2 cells and modulated the immune response, inducing proinflammatory cytokines in peripheral blood mononuclear cells (PBMCs). In the presence of inflammatory stimulation with lipopolysaccharide (LPS),K. marxianusB0399 provoked decreases in the levels of production of proinflammatory cytokines in PBMCs and Caco-2 cells, thus ameliorating the inflammatory response. Furthermore,K. marxianusB0399 impacted the colonic microbiota, increasing the bifidobacterial concentration in the stages of the colonic model system simulating the proximal and transverse colon. The amounts of the short-chain fatty acids acetate and propionate also increased following yeast supplementation. Finally,K. marxianusB0399 was found to induce a decrease of the cytotoxic potential of the culture supernatant from the first stage of the colonic model system. The effects ofK. marxianusB0399 on adhesion, immune function, and colonic microbiota demonstrate that this strain possesses a number of beneficial and strain-specific properties desirable for a microorganism considered for application as a probiotic.


Sign in / Sign up

Export Citation Format

Share Document