scholarly journals Sulfatide Attenuates Experimental Staphylococcus aureus Sepsis through a CD1d-Dependent Pathway

2013 ◽  
Vol 81 (4) ◽  
pp. 1114-1120 ◽  
Author(s):  
Jakub Kwiecinski ◽  
Sara Rhost ◽  
Linda Löfbom ◽  
Maria Blomqvist ◽  
Jan Eric Månsson ◽  
...  

ABSTRACTNatural killer T (NKT) lymphocytes are implicated in the early response to microbial infection. Further, sulfatide, a myelin self-glycosphingolipid, activates a type II NKT cell subset and can modulate disease in murine models. We examined the role of NKT cells and the effect of sulfatide treatment in a murine model ofStaphylococcus aureussepsis. The lack of CD1d-restricted NKT cells did not alter survival after a lethal inoculum ofS. aureus. In contrast, sulfatide treatment significantly improved the survival rate of mice withS. aureussepsis, accompanied by decreased levels of tumor necrosis factor alpha and interleukin-6 in the blood. The protective effect of sulfatide treatment depended on CD1d but not on type I NKT cells, suggesting that activation of type II NKT cells by sulfatide has beneficial effects on the outcome ofS. aureussepsis in this model.

2011 ◽  
Vol 55 (5) ◽  
pp. 1896-1905 ◽  
Author(s):  
Anna C. Shore ◽  
Angela S. Rossney ◽  
Orla M. Brennan ◽  
Peter M. Kinnevey ◽  
Hilary Humphreys ◽  
...  

ABSTRACTThe arginine catabolic mobile element (ACME) is prevalent among methicillin-resistantStaphylococcus aureus(MRSA) isolates of sequence type 8 (ST8) and staphylococcal chromosomal cassettemec(SCCmec) type IVa (USA300) (ST8-MRSA-IVa isolates), and evidence suggests that ACME enhances the ability of ST8-MRSA-IVa to grow and survive on its host. ACME has been identified in a small number of isolates belonging to other MRSA clones but is widespread among coagulase-negative staphylococci (CoNS). This study reports the first description of ACME in two distinct strains of the pandemic ST22-MRSA-IV clone. A total of 238 MRSA isolates recovered in Ireland between 1971 and 2008 were investigated for ACME using a DNA microarray. Twenty-three isolates (9.7%) were ACME positive, and all were either MRSA genotype ST8-MRSA-IVa (7/23, 30%) or MRSA genotype ST22-MRSA-IV (16/23, 70%). Whole-genome sequencing and comprehensive molecular characterization revealed the presence of a novel 46-kb ACME and staphylococcal chromosomal cassettemec(SCCmec) composite island (ACME/SCCmec-CI) in ST22-MRSA-IVh isolates (n= 15). This ACME/SCCmec-CI consists of a 12-kb DNA region previously identified in ACME type II inS. epidermidisATCC 12228, a truncated copy of the J1 region of SCCmectype I, and a complete SCCmectype IVh element. The composite island has a novel genetic organization, with ACME located withinorfXand SCCmeclocated downstream of ACME. One PVL locus-positive ST22-MRSA-IVa isolate carried ACME located downstream of SCCmectype IVa, as previously described in ST8-MRSA-IVa. These results suggest that ACME has been acquired by ST22-MRSA-IV on two independent occasions. At least one of these instances may have involved horizontal transfer and recombination events between MRSA and CoNS. The presence of ACME may enhance dissemination of ST22-MRSA-IV, an already successful MRSA clone.


2020 ◽  
Vol 88 (10) ◽  
Author(s):  
Adeline Peignier ◽  
Paul J. Planet ◽  
Dane Parker

ABSTRACT Staphylococcus aureus is a leading cause of bacterial pneumonia, and we have shown previously that type I interferon (IFN) contributes to the pathogenesis of this disease. In this study, we screened 75 S. aureus strains for their ability to induce type I and III IFN. Both cytokine pathways were differentially stimulated by various S. aureus strains independently of their isolation sites or methicillin resistance profiles. These induction patterns persisted over time, and type I and III IFN generation differentially correlated with tumor necrosis factor alpha production. Investigation of one isolate, strain 126, showed a significant defect in type I IFN induction that persisted over several time points. The lack of induction was not due to differential phagocytosis, subcellular location, or changes in endosomal acidification. A correlation between reduced type I IFN induction levels and decreased autolysis and lysostaphin sensitivity was found between strains. Strain 126 had a decreased rate of autolysis and increased resistance to lysostaphin degradation and host cell-mediated killing. This strain displayed decreased virulence in a murine model of acute pneumonia compared to USA300 (current epidemic strain and commonly used in research) and had reduced capacity to induce multiple cytokines. We observed this isolate to be a vancomycin-intermediate S. aureus (VISA) strain, and reduced Ifnb was observed with a defined mutation in walK that induces a VISA phenotype. Overall, this study demonstrates the heterogeneity of IFN induction by S. aureus and uncovered an interesting property of a VISA strain in its inability to induce type I IFN production.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1641
Author(s):  
Emily E. S. Brettschneider ◽  
Masaki Terabe

Glioblastoma is an aggressive and deadly cancer, but to date, immunotherapies have failed to make significant strides in improving prognoses for glioblastoma patients. One of the current challenges to developing immunological interventions for glioblastoma is our incomplete understanding of the numerous immunoregulatory mechanisms at play in the glioblastoma tumor microenvironment. We propose that Natural Killer T (NKT) cells, which are unconventional T lymphocytes that recognize lipid antigens presented by CD1d molecules, may play a key immunoregulatory role in glioblastoma. For example, evidence suggests that the activation of type I NKT cells can facilitate anti-glioblastoma immune responses. On the other hand, type II NKT cells are known to play an immunosuppressive role in other cancers, as well as to cross-regulate type I NKT cell activity, although their specific role in glioblastoma remains largely unclear. This review provides a summary of our current understanding of NKT cells in the immunoregulation of glioblastoma as well as highlights the involvement of NKT cells in other cancers and central nervous system diseases.


2016 ◽  
Vol 68 (8) ◽  
pp. 665-676 ◽  
Author(s):  
Suryasarathi Dasgupta ◽  
Vipin Kumar
Keyword(s):  
Type Ii ◽  

2015 ◽  
Vol 59 (6) ◽  
pp. 3066-3074 ◽  
Author(s):  
Arryn Craney ◽  
Floyd E. Romesberg

ABSTRACTAntibiotic-resistant bacteria are a significant public health concern and motivate efforts to develop new classes of antibiotics. One such class of antibiotics is the arylomycins, which target type I signal peptidase (SPase), the enzyme responsible for the release of secreted proteins from their N-terminal leader sequences. Despite the essentiality, conservation, and relative accessibility of SPase, the activity of the arylomycins is limited against some bacteria, including the important human pathogenStaphylococcus aureus. To understand the origins of the limited activity againstS. aureus, we characterized the susceptibility of a panel of strains to two arylomycin derivatives, arylomycin A-C16and its more potent analog arylomycin M131. We observed a wide range of susceptibilities to the two arylomycins and found that resistant strains were sensitized by cotreatment with tunicamycin, which inhibits the first step of wall teichoic acid synthesis. To further understand howS. aureusresponds to the arylomycins, we profiled the transcriptional response ofS. aureusNCTC 8325 to growth-inhibitory concentrations of arylomycin M131 and found that it upregulates the cell wall stress stimulon (CWSS) and an operon consisting of a putative transcriptional regulator and three hypothetical proteins. Interestingly, we found that mutations in the putative transcriptional regulator are correlated with resistance, and selection for resistanceex vivodemonstrated that mutations in this gene are sufficient for resistance. The results begin to elucidate howS. aureuscopes with secretion stress and how it evolves resistance to the inhibition of SPase.


1998 ◽  
Vol 88 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Yusuf Ersşahin ◽  
Saffet Mutluer ◽  
Sevgül Kocaman ◽  
Eren Demirtasş

Object. The authors reviewed and analyzed information on 74 patients with split spinal cord malformations (SSCMs) treated between January 1, 1980 and December 31, 1996 at their institution with the aim of defining and classifying the malformations according to the method of Pang, et al. Methods. Computerized tomography myelography was superior to other radiological tools in defining the type of SSCM. There were 46 girls (62%) and 28 boys (38%) ranging in age from less than 1 day to 12 years (mean 33.08 months). The mean age (43.2 months) of the patients who exhibited neurological deficits and orthopedic deformities was significantly older than those (8.2 months) without deficits (p = 0.003). Fifty-two patients had a single Type I and 18 patients a single Type II SSCM; four patients had composite SSCMs. Sixty-two patients had at least one associated spinal lesion that could lead to spinal cord tethering. After surgery, the majority of the patients remained stable and clinical improvement was observed in 18 patients. Conclusions. The classification of SSCMs proposed by Pang, et al., will eliminate the current chaos in terminology. In all SSCMs, either a rigid or a fibrous septum was found to transfix the spinal cord. There was at least one unrelated lesion that caused tethering of the spinal cord in 85% of the patients. The risk of neurological deficits resulting from SSCMs increases with the age of the patient; therefore, all patients should be surgically treated when diagnosed, especially before the development of orthopedic and neurological manifestations.


mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Yong Fu ◽  
Xia Cui ◽  
Sai Fan ◽  
Jing Liu ◽  
Xiao Zhang ◽  
...  

ABSTRACT Acyl coenzyme A (CoA)-binding protein (ACBP) can bind acyl-CoAs with high specificity and affinity, thus playing multiple roles in cellular functions. Mitochondria of the apicomplexan parasite Toxoplasma gondii have emerged as key organelles for lipid metabolism and signaling transduction. However, the rationale for how this parasite utilizes acyl-CoA-binding protein to regulate mitochondrial lipid metabolism remains unclear. Here, we show that an ankyrin repeat-containing protein, TgACBP2, is localized to mitochondria and displays active acyl-CoA-binding activities. Dephosphorylation of TgACBP2 is associated with relocation from the plasma membrane to the mitochondria under conditions of regulation of environmental [K+]. Under high [K+] conditions, loss of ACBP2 induced mitochondrial dysfunction and apoptosis-like cell death. Disruption of ACBP2 caused growth and virulence defects in the type II strain but not in type I parasites. Interestingly, mitochondrial association factor-1 (MAF1)-mediated host mitochondrial association (HMA) restored the growth ability of ACBP2-deficient type II parasites. Lipidomics analysis indicated that ACBP2 plays key roles in the cardiolipin metabolism of type II parasites and that MAF1 expression complemented the lipid metabolism defects of ACBP2-deficient type II parasites. In addition, disruption of ACBP2 caused attenuated virulence of Prugniuad (Pru) parasites for mice. Taking the results collectively, these data indicate that ACBP2 is critical for the growth and virulence of type II parasites and for the growth of type I parasites under high [K+] conditions. IMPORTANCE Toxoplasma gondii is one of the most successful human parasites, infecting nearly one-third of the total world population. T. gondii tachyzoites residing within parasitophorous vacuoles (PVs) can acquire fatty acids both via salvage from host cells and via de novo synthesis pathways for membrane biogenesis. However, although fatty acid fluxes are known to exist in this parasite, how fatty acids flow through Toxoplasma lipid metabolic organelles, especially mitochondria, remains unknown. In this study, we demonstrated that Toxoplasma expresses an active ankyrin repeat containing protein TgACBP2 to coordinate cardiolipin metabolism. Specifically, HMA acquisition resulting from heterologous functional expression of MAF1 rescued growth and lipid metabolism defects in ACBP2-deficient type II parasites, manifesting the complementary role of host mitochondria in parasite cardiolipin metabolism. This work highlights the importance of TgACBP2 in parasite cardiolipin metabolism and provides evidence for metabolic association of host mitochondria with T. gondii.


2020 ◽  
Author(s):  
Deepshikha Bhowmik ◽  
Shiela Chetri ◽  
Bhaskar Jyoti Das ◽  
Debadatta Dhar Chanda ◽  
Amitabha Bhattacharjee

Abstract Objective: This study was designed to discover the dissemination of virulence genes in Methicillin-resistant Staphylococcus aureus from clinical and environmental settings. Results: The virulence gene such as sea (n=54), seb (n=21), eta (n=27), etb (n=2), cna (n=24), ica (n=2) and tst (n=30) was revealed from this study. Different SCCmec types such as type I, type II, type III, type IV, type V, type VI, type VII, type VIII and type XII were detected among sixty three MRSA isolates where SCCmec type II having ST1551 and type V with ST2416 were found to be associated with multidrug resistance and were highly prevalent in the study area.


2005 ◽  
Vol 102 (2) ◽  
pp. 284-289 ◽  
Author(s):  
Zhe Bao Wu ◽  
Chun Jiang Yu ◽  
Shu Sen Guan

Object. The aim of this study was to discuss posterior petrous meningiomas—their classification, clinical manifestations, surgical treatments, and patient outcomes. Methods. A retrospective analysis was performed in 82 patients with posterior petrous meningiomas for microsurgery. According to the anatomical relationship with the posterior surface of the petrous bone and with special reference to the internal auditory canal (IAC), posterior petrous meningiomas were classified into three types: Type I, located laterally to the IAC (28 cases); Type II, located medially to the IAC, which might extend to the cavernous sinus and clivus (32 cases); and Type III, extensively attached to the posterior surface of the petrous bone, which might envelop the seventh and eighth cranial nerves (22 cases). Sixty-eight (83%) of 82 cases involved total resection. The rate of anatomical preservation of facial nerve was 97.5%, whereas the functional preservation rate was 81%. The rate of hearing preservation was 67%. All Type I tumors were completely resected, and the rate of anatomical preservation of facial nerve was 100% and functional preservation was 93%. Regarding Type II lesions, 75% of 32 cases involved total resection; the rate of anatomical preservation of facial nerve was 97% and functional preservation was 75%. For Type III lesions, 73% of 22 cases were totally resected. The rate of anatomical preservation of facial nerve in patients with this tumor type was 95%, whereas functional preservation was 73%. Conclusions. Clinical manifestations and surgical prognoses are different among the various types of posterior petrous meningiomas. It is more difficult for Types II and III tumors to be resected radically than Type I lesions, and postoperative functional outcomes are significantly worse accordingly. The primary principles in dealing with this disease entity include preservation of vital vascular and central nervous system structures and total resection of the tumor as much as possible.


2019 ◽  
Vol 88 (1) ◽  
Author(s):  
Nadine Radomski ◽  
Axel Karger ◽  
Kati Franzke ◽  
Elisabeth Liebler-Tenorio ◽  
Rico Jahnke ◽  
...  

ABSTRACT Dendritic cells (DCs) and natural killer (NK) cells are critically involved in the early response against various bacterial microbes. Functional activation of infected DCs and NK cell-mediated gamma interferon (IFN-γ) secretion essentially contribute to the protective immunity against Chlamydia. How DCs and NK cells cooperate during the antichlamydial response is not fully understood. Therefore, in the present study, we investigated the functional interplay between Chlamydia-infected DCs and NK cells. Our biochemical and cell biological experiments show that Chlamydia psittaci-infected DCs display enhanced exosome release. We find that such extracellular vesicles (referred to as dexosomes) do not contain infectious bacterial material but strongly induce IFN-γ production by NK cells. This directly affects C. psittaci growth in infected target cells. Furthermore, NK cell-released IFN-γ in cooperation with tumor necrosis factor alpha (TNF-α) and/or dexosomes augments apoptosis of both noninfected and infected epithelial cells. Thus, the combined effect of dexosomes and proinflammatory cytokines restricts C. psittaci growth and attenuates bacterial subversion of apoptotic host cell death. In conclusion, this provides new insights into the functional cooperation between DCs, dexosomes, and NK cells in the early steps of antichlamydial defense.


Sign in / Sign up

Export Citation Format

Share Document