scholarly journals pH-Induced Conformational Changes inClostridium difficile Toxin B

2000 ◽  
Vol 68 (5) ◽  
pp. 2470-2474 ◽  
Author(s):  
Maen Qa'Dan ◽  
Lea M. Spyres ◽  
Jimmy D. Ballard

ABSTRACT Toxin B from Clostridium difficile is a monoglucosylating toxin that targets substrates within the cytosol of mammalian cells. In this study, we investigated the impact of acidic pH on cytosolic entry and structural changes within toxin B. Bafilomycin A1 was used to block endosomal acidification and subsequent toxin B translocation. Cytopathic effects could be completely blocked by addition of bafilomycin A1 up to 20 min following toxin treatment. Furthermore, providing a low extracellular pH could circumvent the effect of bafilomycin A1 and other lysosomotropic agents. Acid pH-induced structural changes were monitored by using the fluorescent probe 2-(p-toluidinyl) naphthalene-6-sulfonic acid, sodium salt (TNS), inherent tryptophan fluorescence, and relative susceptibility to a specific protease. As the toxin was exposed to lower pH there was an increase in TNS fluorescence, suggesting the exposure of hydrophobic domains by toxin B. The change in hydrophobicity appeared to be reversible, since returning the pH to neutrality abrogated TNS fluorescence. Furthermore, tryptophan fluorescence was quenched at the acidic pH, indicating that domains may have been moving into more aqueous environments. Toxin B also demonstrated variable susceptibility to Staphylococcus aureus V8 protease at neutral and acidic pH, further suggesting pH-induced structural changes in this protein.

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Daniel Alberto Carrillo-Vázquez ◽  
Eduardo Jardón-Valadez ◽  
Jiram Torres-Ruiz ◽  
Guillermo Juárez-Vega ◽  
José Luis Maravillas-Montero ◽  
...  

Abstract Background Neutrophil extracellular traps (NETs) from patients with systemic lupus erythematosus (SLE) are characterized by lower ubiquitylation and myeloperoxidase (MPO) as a substrate. The structural and functional effect of such modification and if there are additional post-translational modifications (PTMs) are unknown. Methods To assess the expression and functional role of PTMs in NETs of patients with SLE; reactivation, proliferation and cytokine production was evaluated by flow cytometry using co-cultures with dendritic cells (DC) and CD4+ from SLE patients and healthy controls. The impact of ubiquitylation on MPO was assessed by molecular dynamics. The expression of ISG15 in NETs was evaluated by immunofluorescence and Western Blot. Results Fifteen patients with SLE and ten healthy controls were included. In the co-cultures of CD4+ lymphocytes with DC stimulated with ubiquitylated MPO or recombinant MPO, a higher expression of IFNγ and IL-17A was found in CD4+ from SLE patients (p < 0.05). Furthermore, with DC stimulated with ubiquitylated MPO a trend towards increased expression of CD25 and Ki67 was found in lupus CD4+ lymphocytes, while the opposite was documented in controls (p < 0.05). Through molecular dynamics we found the K129-K488-K505 residues of MPO as susceptible to ubiquitylation. Ubiquitylation affects the hydration status of the HEME group depending on the residue to which it is conjugated. R239 was found near by the HEME group when the ubiquitin was in K488-K505. In addition, we found greater expression of ISG15 in the SLE NETs vs controls (p < 0.05), colocalization with H2B (r = 0.81) only in SLE samples and increased production of IFNγ in PBMCs stimulated with lupus NETs compared to healthy controls NETs. Conclusion The ubiquitylated MPO has a differential effect on the induction of reactivation of CD4+ lymphocytes in patients with SLE, which may be related to structural changes by ubiquitylation at the catalytic site of MPO. Besides a lower ubiquitylation pattern, NETs of patients with SLE are characterized by the expression of ISG15, and the induction of IFNγ by Th1 cells.


2020 ◽  
Vol 168 (5) ◽  
pp. 557-567
Author(s):  
Wanitcha Rachadech ◽  
Yusuke Kato ◽  
Rabab M Abou El-Magd ◽  
Yuji Shishido ◽  
Soo Hyeon Kim ◽  
...  

Abstract Human D-amino acid oxidase (DAO) is a flavoenzyme that is implicated in neurodegenerative diseases. We investigated the impact of replacement of proline with leucine at Position 219 (P219L) in the active site lid of human DAO on the structural and enzymatic properties, because porcine DAO contains leucine at the corresponding position. The turnover numbers (kcat) of P219L were unchanged, but its Km values decreased compared with wild-type, leading to an increase in the catalytic efficiency (kcat/Km). Moreover, benzoate inhibits P219L with lower Ki value (0.7–0.9 µM) compared with wild-type (1.2–2.0 µM). Crystal structure of P219L in complex with flavin adenine dinucleotide (FAD) and benzoate at 2.25 Å resolution displayed conformational changes of the active site and lid. The distances between the H-bond-forming atoms of arginine 283 and benzoate and the relative position between the aromatic rings of tyrosine 224 and benzoate were changed in the P219L complex. Taken together, the P219L substitution leads to an increase in the catalytic efficiency and binding affinity for substrates/inhibitors due to these structural changes. Furthermore, an acetic acid was located near the adenine ring of FAD in the P219L complex. This study provides new insights into the structure–function relationship of human DAO.


1998 ◽  
Vol 76 (4) ◽  
pp. 583-591 ◽  
Author(s):  
Isabella DalleDonne ◽  
Aldo Milzani ◽  
Roberto Colombo

Paraquat (1,1´-dimethyl-4,4´-bipyridilium dichloride) is a broad-spectrum herbicide that is highly toxic to animals (including man), the major lesion being in the lung. In mammalian cells, paraquat causes deep alterations in the organization of the cytoskeleton, marked decreases in cytoskeletal protein synthesis, and alterations in cytoskeletal protein composition; therefore, the involvement of the cytoskeleton in cell injury by paraquat was suggested. We previously demonstrated that monomeric actin binds paraquat; moreover, prolonged actin exposure to paraquat, in depolymerizing medium, induces the formation of actin aggregates, which are built up by F-actin. In this work we have shown that the addition of paraquat to monomeric actin results in a strong quenching of Trp-79 and Trp-86 fluorescence. Trypsin digestion experiments demonstrated that the sequence 61-69 on actin subdomain 2 undergoes paraquat-dependent conformational changes. These paraquat-induced structural changes render actin unable to completely inhibit DNase I. By using intermolecular cross-linking to characterize oligomeric species formed during paraquat-induced actin assembly, we found that the herbicide causes the formation of actin oligomers characterized by subunit-subunit contacts like those occurring in oligomers induced by polymerizing salts (i.e., between subdomain 1 on one actin subunit and subdomain 4 on the adjacent subunit). Furthermore, the oligomerization of G-actin induced by paraquat is paralleled by ATP hydrolysis.Key words: actin, paraquat, subdomain 2, DNase I, ATP hydrolysis.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Luis Luis ◽  
María Luisa Serrano ◽  
Mariana Hidalgo ◽  
Alexis Mendoza-León

Differential susceptibility to microtubule agents has been demonstrated between mammalian cells and kinetoplastid organisms such asLeishmania spp. andTrypanosoma spp. The aims of this study were to identify and characterize the architecture of the putative colchicine binding site ofLeishmania spp. and investigate the molecular basis of colchicine resistance. We cloned and sequenced theβ-tubulin gene ofLeishmania (Viannia) guyanensisand established the theoretical 3D model of the protein, using the crystallographic structure of the bovine protein as template. We identified mutations on theLeishmania  β-tubulin gene sequences on regions related to the putative colchicine-binding pocket, which generate amino acid substitutions and changes in the topology of this region, blocking the access of colchicine. The same mutations were found in theβ-tubulin sequence of kinetoplastid organisms such asTrypanosoma cruzi,T. brucei, andT. evansi. Using molecular modelling approaches, we demonstrated that conformational changes include an elongation and torsion of anα-helix structure and displacement to the inside of the pocket of oneβ-sheet that hinders access of colchicine. We propose that kinetoplastid organisms show resistance to colchicine due to amino acids substitutions that generate structural changes in the putative colchicine-binding domain, which prevent colchicine access.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jong Hyeon Seok ◽  
Hyojin Kim ◽  
Dan Bi Lee ◽  
Jeong Suk An ◽  
Eun Jeong Kim ◽  
...  

Abstract Divalent cations Cu2+ and Zn2+ can prevent the viral growth in mammalian cells during influenza infection, and viral titers decrease significantly on a copper surface. The underlying mechanisms include DNA damage by radicals, modulation of viral protease, M1 or neuraminidase, and morphological changes in viral particles. However, the molecular mechanisms underlying divalent cation-mediated antiviral activities are unclear. An unexpected observation of this study was that a Zn2+ ion is bound by Glu68 and His137 residues at the head regions of two neighboring trimers in the crystal structure of hemagglutinin (HA) derived from A/Thailand/CU44/2006. The binding of Zn2+ at high concentrations induced multimerization of HA and decreased its acid stability. The acid-induced conformational change of HA occurred even at neutral pH in the presence of Zn2+. The fusion of viral and host endosomal membranes requires substantial conformational changes in HA upon exposure to acidic pH. Therefore, our results suggest that binding of Zn2+ may facilitate the conformational changes of HA, analogous to that induced by acidic pH.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Emeline Bonsergent ◽  
Eleonora Grisard ◽  
Julian Buchrieser ◽  
Olivier Schwartz ◽  
Clotilde Théry ◽  
...  

AbstractExtracellular vesicles (EVs), including exosomes, are thought to mediate intercellular communication through the transfer of cargoes from donor to acceptor cells. Occurrence of EV-content delivery within acceptor cells has not been unambiguously demonstrated, let alone quantified, and remains debated. Here, we developed a cell-based assay in which EVs containing luciferase- or fluorescent-protein tagged cytosolic cargoes are loaded on unlabeled acceptor cells. Results from dose-responses, kinetics, and temperature-block experiments suggest that EV uptake is a low yield process (~1% spontaneous rate at 1 h). Further characterization of this limited EV uptake, through fractionation of membranes and cytosol, revealed cytosolic release (~30% of the uptaken EVs) in acceptor cells. This release is inhibited by bafilomycin A1 and overexpression of IFITM proteins, which prevent virus entry and fusion. Our results show that EV content release requires endosomal acidification and suggest the involvement of membrane fusion.


2017 ◽  
Author(s):  
Xiuling Xu ◽  
Astrid Höppner ◽  
Kai-Hong Zhao ◽  
Wolfgang Gärtner

AbbreviationsASUasymmetric unitBV, PCB, PVB (bilin compounds serving as chromophores)biliverdin Ixα, phycocyanobilin, phycoviolobilinCAPSON-cyclohexyl-2-hydroxyl-3-aminopropanesulfonic acidCBCRcyanobacteriochromeGAF (protein domain)cGMP-specific phosphodiesterases adenylyl cyclases and FhlAIMACimmobilized metal-affinity chromatographyMRmolecular replacementPAS (protein domain)Per-Arnt-SimPHY (protein domain)phytochrome-specificPfr, Pg, Prfar red-, green-, and red-absorbing states of phytochromes and CBCRsSummaryThe GAF3 domain of cyanobacteriochrome Slr1393 (Synechocystis PCC6803) with an in vivo assembled phycocyanobilin (PCB) chromophore has been crystallized in parental state (1.8 Å) and photoproduct state (1.86 Å), identified by 15-Z and 15-E chromophore configuration. Comparison of both structures for the same protein allows precise determination of structural changes after photo-activation. The chromophore photoisomerization causes an outward movement and partial helix formation of a formerly unstructured loop. A tryptophan residue located in this loop, in π-π stacking distance to PCB in the dark state, moves away by 14 Å opening the binding cleft for the entry of water molecules. Also the in vitro assembled protein (chromophore addition to apo-protein) has been crystallized (1.6 Å resolution). Most importantly, an intermediate structure was solved (2.1 Å) with the protein in photoproduct conformation and the chromophore already isomerized into the parental 15-Z configuration, thereby giving insight into chromophore-initiated conformational protein changes.Impact StatementThis manuscript presents crystal structures of a photochromic protein in both states, before (1.6 Å) and after (1.9 Å) the light induced photochemical event with sufficient resolution to allow detailed description of conformational changes of chromophore and protein. The light driven reaction, double bond photoisomerization of a covalently bound bilin chromophore is presented here for the first time. Our results allow determining the impact of the chromophore photochemistry on the protein conformation. In addition, we succeeded in trapping an intermediate carrying the chromophore already in isomerized state with the protein still in unchanged conformation. Absorption spectra of this intermediate clearly demonstrate a color change, thus allowing conclusion that the absorption of phytochromes is predominantly determined by the chromophore conformation alone with only moderate effect of the surrounding protein.Authors’ ContributionsXX, KHZ, and WG designed the experiment. XX generated the protein. AH performed crystallization trials, collected the X-ray diffraction data and solved the structure. All authors contributed in preparing the manuscript.


Toxins ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 704
Author(s):  
Mykola V. Rodnin ◽  
Maithri M. Kashipathy ◽  
Alexander Kyrychenko ◽  
Kevin P. Battaile ◽  
Scott Lovell ◽  
...  

Diphtheria toxin, an exotoxin secreted by Corynebacterium that causes disease in humans by inhibiting protein synthesis, enters the cell via receptor-mediated endocytosis. The subsequent endosomal acidification triggers a series of conformational changes, resulting in the refolding and membrane insertion of the translocation (T-)domain and ultimately leading to the translocation of the catalytic domain into the cytoplasm. Here, we use X-ray crystallography along with circular dichroism and fluorescence spectroscopy to gain insight into the mechanism of the early stages of pH-dependent conformational transition. For the first time, we present the high-resolution structure of the diphtheria toxin at a mildly acidic pH (5–6) and compare it to the structure at neutral pH (7). We demonstrate that neither catalytic nor receptor-binding domains change their structure upon this acidification, while the T-domain undergoes a conformational change that results in the unfolding of the TH2–3 helices. Surprisingly, the TH1 helix maintains its conformation in the crystal of the full-length toxin even at pH 5. This contrasts with the evidence from the new and previously published data, obtained by spectroscopic measurements and molecular dynamics computer simulations, which indicate the refolding of TH1 upon the acidification of the isolated T-domain. The overall results imply that the membrane interactions of the T-domain are critical in ensuring the proper conformational changes required for the preparation of the diphtheria toxin for the cellular entry.


Author(s):  
M. Boublik ◽  
V. Mandiyan ◽  
J.F. Hainfeld ◽  
J.S. Wall

The aim of this study is to understand the mechanism of 16S rRNA folding into the compact structure of the small 30S subunit of E. coli ribosome. The assembly of the 30S E. coli ribosomal subunit is a sequence of specific interactions of 16S rRNA with 21 ribosomal proteins (S1-S21). Using dedicated high resolution STEM we have monitored structural changes induced in 16S rRNA by the proteins S4, S8, S15 and S20 which are involved in the initial steps of 30S subunit assembly. S4 is the first protein to bind directly and stoichiometrically to 16S rRNA. Direct binding also occurs individually between 16S RNA and S8 and S15. However, binding of S20 requires the presence of S4 and S8. The RNA-protein complexes are prepared by the standard reconstitution procedure, dialyzed against 60 mM KCl, 2 mM Mg(OAc)2, 10 mM-Hepes-KOH pH 7.5 (Buffer A), freeze-dried and observed unstained in dark field at -160°.


2019 ◽  
pp. 79-91 ◽  
Author(s):  
V. S. Nazarov ◽  
S. S. Lazaryan ◽  
I. V. Nikonov ◽  
A. I. Votinov

The article assesses the impact of various factors on the growth rate of international trade. Many experts interpreted the cross-border flows of goods decline against the backdrop of a growing global economy as an alarming sign that indicates a slowdown in the processes of globalization. To determine the reasons for the dynamics of international trade, the decompositions of its growth rate were carried out and allowed to single out the effect of the dollar exchange rate, the commodities prices and global value chains on the change in the volume of trade. As a result, it was discovered that the most part of the dynamics of international trade is due to fluctuations in the exchange rate of the dollar and prices for basic commodity groups. The negative contribution of trade within global value chains in 2014 was also revealed. During the investigated period (2000—2014), such a picture was observed only in the crisis periods, which may indicate the beginning of structural changes in the world trade.


Sign in / Sign up

Export Citation Format

Share Document