scholarly journals Interleukin-10 Negatively Regulates Local Cytokine and Chemokine Production but Does Not Influence Antibacterial Host Defense during Murine Pneumococcal Meningitis

2003 ◽  
Vol 71 (4) ◽  
pp. 2276-2279 ◽  
Author(s):  
Petra J. G. Zwijnenburg ◽  
Tom van der Poll ◽  
Sandrine Florquin ◽  
John J. Roord ◽  
A. Marceline van Furth

ABSTRACT To determine the role of endogenous interleukin-10 (IL-10) in local host defense during pneumococcal meningitis, the inflammatory responses of IL-10-gene-deficient and wild-type mice after the induction of meningitis were compared. The absence of IL-10 was associated with higher cytokine and chemokine concentrations and a more pronounced infiltrate, but antibacterial defense or survival was not influenced.

2008 ◽  
Vol 76 (9) ◽  
pp. 4322-4331 ◽  
Author(s):  
Abraham Guerrero ◽  
Bettina C. Fries

ABSTRACT Cryptococcus neoformans is an encapsulated opportunistic organism that can undergo phenotypic switching. In this process, the parent smooth colony (SM) switches to a more virulent mucoid colony (MC) variant. The host responses mounted against the SM and MC variants differ, and lower tissue interleukin 10 (IL-10) levels are consistently observed in lungs of MC-infected C57BL/6 and BALB/c mice. This suggested different roles of this cytokine in SM and MC infections. The objective of this study was to compare survival rates and characterize the host responses of SM- and MC-infected IL-10-depleted (IL-10−/−) mice, which exhibit a Th1-polarized immune response and are considered resistant hosts. As expected, SM-infected IL-10−/− mice survived longer than wild-type mice, whereas MC-infected IL-10−/− mice did not exhibit a survival benefit. Consistent with this observation, we demonstrated marked differences in the inflammatory responses of SM- and MC-infected IL-10−/− and wild-type mice. This included a more Th1-polarized inflammatory response with enhanced recruitment of macrophages and natural killer and CD8 cells in MC- than in SM-infected IL-10−/− and wild-type mice. In contrast, both SM-infected IL-10−/− and wild-type mice exhibited higher recruitment of CD4 cells, consistent with enhanced survival and differences in recruitment and Th1/Th2 polarization. Lung tissue levels of IL-21, IL-6, IL-4, transforming growth factor beta, IL-12, and gamma interferon were higher in MC-infected IL-10−/− and wild-type mice than in SM-infected mice, whereas tumor necrosis factor alpha levels were higher in SM-infected IL-10−/− mice. In conclusion, the MC variant elicits an excessive inflammatory response in a Th1-polarized host environment, and therefore, the outcome is negatively affected by the absence of IL-10.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Taeyeop Park ◽  
Huazhen Chen ◽  
Hee-Yong Kim

Abstract Background Neuroinflammation is a widely accepted underlying condition for various pathological processes in the brain. In a recent study, synaptamide, an endogenous metabolite derived from docosahexaenoic acid (DHA, 22:6n-3), was identified as a specific ligand to orphan adhesion G-protein-coupled receptor 110 (GPR110, ADGRF1). Synaptamide has been shown to suppress lipopolysaccharide (LPS)-induced neuroinflammation in mice, but involvement of GPR110 in this process has not been established. In this study, we investigated the possible immune regulatory role of GPR110 in mediating the anti-neuroinflammatory effects of synaptamide under a systemic inflammatory condition. Methods For in vitro studies, we assessed the role of GPR110 in synaptamide effects on LPS-induced inflammatory responses in adult primary mouse microglia, immortalized murine microglial cells (BV2), primary neutrophil, and peritoneal macrophage by using quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA) as well as neutrophil migration and ROS production assays. To evaluate in vivo effects, wild-type (WT) and GPR110 knock-out (KO) mice were injected with LPS intraperitoneally (i.p.) or TNF intravenously (i.v.) followed by synaptamide (i.p.), and expression of proinflammatory mediators was measured by qPCR, ELISA, and western blot analysis. Activated microglia in the brain and NF-kB activation in cells were examined microscopically after immunostaining for Iba-1 and RelA, respectively. Results Intraperitoneal (i.p.) administration of LPS increased TNF and IL-1β in the blood and induced pro-inflammatory cytokine expression in the brain. Subsequent i.p. injection of the GPR110 ligand synaptamide significantly reduced LPS-induced inflammatory responses in wild-type (WT) but not in GPR110 knock-out (KO) mice. In cultured microglia, synaptamide increased cAMP and inhibited LPS-induced proinflammatory cytokine expression by inhibiting the translocation of NF-κB subunit RelA into the nucleus. These effects were abolished by blocking synaptamide binding to GPR110 using an N-terminal targeting antibody. GPR110 expression was found to be high in neutrophils and macrophages where synaptamide also caused a GPR110-dependent increase in cAMP and inhibition of LPS-induced pro-inflammatory mediator expression. Intravenous injection of TNF, a pro-inflammatory cytokine that increases in the circulation after LPS treatment, elicited inflammatory responses in the brain which were dampened by the subsequent injection (i.p.) of synaptamide in a GPR110-dependent manner. Conclusion Our study demonstrates the immune-regulatory function of GPR110 in both brain and periphery, collectively contributing to the anti-neuroinflammatory effects of synaptamide under a systemic inflammatory condition. We suggest GPR110 activation as a novel therapeutic strategy to ameliorate inflammation in the brain as well as periphery.


2014 ◽  
Vol 307 (3) ◽  
pp. G338-G346 ◽  
Author(s):  
Courtney C. Kurtz ◽  
Ioannis Drygiannakis ◽  
Makoto Naganuma ◽  
Sanford Feldman ◽  
Vasileios Bekiaris ◽  
...  

Adenosine is a purine metabolite that can mediate anti-inflammatory responses in the digestive tract through the A2A adenosine receptor (A2AAR). We examined the role of this receptor in the control of inflammation in the adoptive transfer model of colitis. Infection of A2AAR−/− mice with Helicobacter hepaticus increased colonic inflammation scores compared with uninfected A2AAR controls. Comparison of T cell subsets in wild-type and A2AAR−/− mice revealed differences in markers associated with activated helper T (Th) cells and regulatory T (Treg) cells. Previous studies showed that expression of A2AAR on CD45RBHI and CD45RBLO Th cells is essential for the proper regulation of colonic inflammation. Adoptive transfer of CD45RBHI with CD45RBLO from wild-type mice into RAG1−/−/A2AAR−/− mice induced severe disease within 3 wk, although transfer of the same subsets into RAG1−/− mice does not induce colitis. This suggests that the presence of A2AAR on recipient cells is also important for controlling colitis. To investigate the role of A2AAR in myeloid cells, chimeric recipients were generated by injection of bone marrow from RAG1−/− or RAG1−/−/A2AAR−/− mice into irradiated RAG1−/− mice. After adoptive transfer, these recipients did not develop colitis, regardless of A2AAR expression by the donor. Together, our results suggest that the control of inflammation in vivo is dependent on A2AAR signaling through multiple cell types that collaborate in the regulation of colitis by responding to extracellular adenosine.


2008 ◽  
Vol 77 (1) ◽  
pp. 108-119 ◽  
Author(s):  
Hemanth Ramaprakash ◽  
Toshihiro Ito ◽  
Theodore J. Standiford ◽  
Steven L. Kunkel ◽  
Cory M. Hogaboam

ABSTRACT The role of Toll-like receptor 9 (TLR9) in antifungal responses in the immunodeficient and allergic host is unclear. We investigated the role of TLR9 in murine models of invasive aspergillosis and fungal asthma. Neutrophil-depleted TLR9 wild-type (TLR9+/+) and TLR9-deficient (TLR9−/−) mice were challenged with resting or swollen Aspergillus fumigatus conidia and monitored for survival and lung inflammatory responses. The absence of TLR9 delayed, but did not prevent, mortality in immunodeficient mice challenged with resting or swollen conidia compared to TLR9+/+ mice. In a fungal asthma model, TLR9+/+ and TLR9−/− mice were sensitized to soluble A. fumigatus antigens and challenged with resting or swollen A. fumigatus conidia, and both groups of mice were analyzed prior to and at days 7, 14, and 28 after the conidium challenge. When challenged with resting conidia, TLR9−/− mice exhibited significantly lower airway hyper-responsiveness compared to the TLR9+/+ groups. In contrast, A. fumigatus-sensitized TLR9−/− mice exhibited pulmonary fungal growth at days 14 and 28 after challenge with swollen conidia, a finding never observed in their allergic wild-type counterparts. Increased fungal growth in allergic TLR9−/− mice correlated with markedly decreased dectin-1 expression in whole lung samples and isolated dendritic cell populations. Further, whole lung levels of interleukin-17 were lower in allergic TLR9−/− mice compared to similar TLR9+/+ mice. Together, these data suggest that TLR9 modulates pulmonary antifungal immune responses to swollen conidia, possibly through the regulation of dectin-1 expression.


2007 ◽  
Vol 75 (6) ◽  
pp. 3055-3061 ◽  
Author(s):  
Xiaowen L. Rudner ◽  
Kyle I. Happel ◽  
Erana A. Young ◽  
Judd E. Shellito

ABSTRACT Host defense mechanisms against Pneumocystis carinii are not fully understood. Previous work in the murine model has shown that host defense against infection is critically dependent upon host CD4+ T cells. The recently described Th17 immune response is predominantly a function of effector CD4+ T cells stimulated by interleukin-23 (IL-23), but whether these cells are required for defense against P. carinii infection is unknown. We tested the hypothesis that P. carinii stimulates the early release of IL-23, leading to increases in IL-17 production and lung effector CD4+ T-cell population that mediate clearance of infection. In vitro, stimulation of alveolar macrophages with P. carinii induced IL-23, and IL-23p19 mRNA was expressed in lungs of mice infected with this pathogen. To address the role of IL-23 in resistance to P. carinii, IL-23p19−/− and wild-type control C57BL/6 mice were infected and their fungal burdens and cytokine/chemokine responses were compared. IL-23p19−/− mice displayed transient but impaired clearance of infection, which was most apparent 2 weeks after inoculation. In confirmatory studies, the administration of either anti-IL-23p19 or anti-IL-17 neutralizing antibody to wild-type mice infected with P. carinii also caused increases in fungal burdens. IL-17 and the lymphocyte chemokines IP-10, MIG, MIP-1α, MIP-1β, and RANTES were decreased in the lungs of infected IL-23p19−/− mice in comparison to their levels in the lungs of wild-type mice. In IL-23p19−/− mice infected with P. carinii, there were fewer effector CD4+ T cells in the lung tissue. Collectively, these studies indicate that the IL-23-IL-17 axis participates in host defense against P. carinii.


1996 ◽  
Vol 5 (3) ◽  
pp. 218-223 ◽  
Author(s):  
L. A. Goldstein ◽  
R. M. Strieter ◽  
H. L. Evanoff ◽  
S. L. Kunkel ◽  
N. W. Lukacs

The role of eosinophils in inflammation and their mode of activation is not well understood. Eosinophil accumulation and subsequent expression of cytokines at the site of inflammation may play a role in exacerbation of inflammatory responses. In the present study, we have examined the role of TNF-α in eosinophil activation and chemokine production using a human leukaemic eosinophil cell line, EOL-1. Initial studies demonstrated that TNF-α induced the upregulation of IL-8 and MCP-1 mRNA and protein. Kinetic studies indicated production of chemokines, IL-8 and MCP-1, as early as 4 h post-activation, with peak levels of chemokine produced at 8 h, and decreasing by 24 h post-TNF-α activation. When IL-10, a suppressive cytokine, was incubated with TNF-α and EOL-1 cells, no effect was observed on IL-8 and MCP-1 production. However, dexamethasone, a glucocorticoid, demonstrated potent inhibitory effects on the EOL-1-derived chemokines. These studies indicate that eosinophils may be a significant source of chemokines capable of participating in, and maintaining, leukocyte recruitment during inflammatory responses, such as asthma.


Blood ◽  
2006 ◽  
Vol 108 (7) ◽  
pp. 2420-2427 ◽  
Author(s):  
Jonathan M. Swartz ◽  
Kimberly D. Dyer ◽  
Allen W. Cheever ◽  
Thirumalai Ramalingam ◽  
Lesley Pesnicak ◽  
...  

AbstractWe explore the controversial issue of the role of eosinophils in host defense against helminthic parasites using the established Schistosoma mansoni infection model in 2 novel mouse models of eosinophil lineage ablation (ΔdblGATA and TgPHIL). No eosinophils were detected in bone marrow of infected ΔdblGATA or TgPHIL mice, despite the fact that serum IL-5 levels in these infected mice exceeded those in infected wild type by approximately 4-fold. Liver granulomata from infected ΔdblGATA and TgPHIL mice were likewise depleted of eosinophils compared with those from their respective wild types. No eosinophil-dependent differences in granuloma number, size, or fibrosis were detected at weeks 8 or 12 of infection, and differential accumulation of mast cells was observed among the ΔdblGATA mice only at week 12. Likewise, serum levels of liver transaminases, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) increased in all mice in response to S mansoni infection, with no eosinophil-dependent differences in hepatocellular damage observed. Finally, eosinophil ablation had no effect on worm burden or on egg deposition. Overall, our data indicate that eosinophil ablation has no impact on traditional measures of disease in the S mansoni infection model in mice. However, eosinophils may have unexplored immunomodulatory contributions to this disease process.


2009 ◽  
Vol 207 (1) ◽  
pp. 117-128 ◽  
Author(s):  
Fangfang Yin ◽  
Rebecca Banerjee ◽  
Bobby Thomas ◽  
Ping Zhou ◽  
Liping Qian ◽  
...  

Progranulin (PGRN) is a widely expressed protein involved in diverse biological processes. Haploinsufficiency of PGRN in the human causes tau-negative, ubiquitin-positive frontotemporal dementia (FTD). However, the mechanisms are unknown. To explore the role of PGRN in vivo, we generated PGRN-deficient mice. Macrophages from these mice released less interleukin-10 and more inflammatory cytokines than wild type (WT) when exposed to bacterial lipopolysaccharide. PGRN-deficient mice failed to clear Listeria monocytogenes infection as quickly as WT and allowed bacteria to proliferate in the brain, with correspondingly greater inflammation than in WT. PGRN-deficient macrophages and microglia were cytotoxic to hippocampal cells in vitro, and PGRN-deficient hippocampal slices were hypersusceptible to deprivation of oxygen and glucose. With age, brains of PGRN-deficient mice displayed greater activation of microglia and astrocytes than WT, and their hippocampal and thalamic neurons accumulated cytosolic phosphorylated transactivation response element DNA binding protein–43. Thus, PGRN is a key regulator of inflammation and plays critical roles in both host defense and neuronal integrity. FTD associated with PGRN insufficiency may result from many years of reduced neutrotrophic support together with cumulative damage in association with dysregulated inflammation.


2001 ◽  
Vol 281 (1) ◽  
pp. H48-H52 ◽  
Author(s):  
Steven P. Jones ◽  
Steven D. Trocha ◽  
David J. Lefer

Myocardial ischemia-reperfusion (I/R) is a well-known stimulus for acute inflammatory responses that promote cell death and impair pump function. Interleukin-10 (IL-10) is an endogenous, potent anti-inflammatory cytokine. Recently, it has been proposed that IL-10 inhibits inducible nitric oxide synthase (iNOS) activity after myocardial I/R and consequently exerts cardioprotective effects. However, whether this actually occurs remains unclear. To test this hypothesis, we utilized iNOS-deficient (−/−), IL-10 −/−, and IL-10/iNOS −/− mice to examine the potential mechanism of IL-10-mediated cardioprotection after myocardial I/R. Wild-type, iNOS −/−, IL-10 −/−, and IL-10/iNOS −/− mice were subjected to in vivo myocardial ischemia (30 min) and reperfusion (24 h). Deficiency of iNOS alone did not significantly alter the extent of myocardial necrosis compared with wild-type mice. We found that deficiency of IL-10 resulted in a significantly ( P < 0.05) larger infarct size than that in wild-type hearts. Interestingly, deficiency of both IL-10 and iNOS yielded significantly ( P < 0.01) larger myocardial infarct sizes compared with wild-type animals. Histological examination of myocardial tissue samples revealed augmented neutrophil infiltration into the I/R myocardium of IL-10 −/− and IL-10/iNOS −/− mice compared with hearts of wild-type mice. These results demonstrate that 1) deficiency of endogenous IL-10 exacerbates myocardial injury after I/R; 2) the cardioprotective effects of IL-10 are not dependent on the presence or absence of iNOS; and 3) deficiency of IL-10 enhances the infiltration of neutrophils into the myocardium after I/R.


Blood ◽  
2008 ◽  
Vol 112 (8) ◽  
pp. 3455-3464 ◽  
Author(s):  
Richard A. Dean ◽  
Jennifer H. Cox ◽  
Caroline L. Bellac ◽  
Alain Doucet ◽  
Amanda E. Starr ◽  
...  

AbstractThrough the activity of macrophage-specific matrix metalloproteinase-12 (MMP-12), we found that macrophages dampen the lipopolysaccharide (LPS)-induced influx of polymorphonuclear leukocytes (PMNs)—thus providing a new mechanism for the termination of PMN recruitment in acute inflammation. MMP-12 specifically cleaves human ELR+ CXC chemokines (CXCL1, -2, -3, -5, and -8) at E-LR, the critical receptor-binding motif or, for CXCL6, carboxyl-terminal to it. Murine (m) MMP-12 also cleaves mCXCL1, -2, and -3 at E-LR. MMP-12-cleaved mCXCL2 (macrophage-inflammatory protein-2 [MIP-2]) and mCXCL3 (dendritic cell inflammatory protein-1 [DCIP-1]) lost chemotactic activity. Furthermore, MMP-12 processed and inactivated monocyte chemotactic proteins CCL2, -7, -8, and -13 at position 4-5 generating CCR antagonists. Indeed, PMNs and macrophages in bronchoalveolar lavage fluid were significantly increased 72 hours after intranasal instillation of LPS in Mmp12−/− mice compared with wild type. Specificity occurred at 2 levels. Macrophage MMP-1 and MMP-9 did not cleave in the ELR motif. Second, unlike human ELR+CXC chemokines, mCXCL5 (LPS-induced CXC chemokine [LIX]) was not inactivated. Rather, mMMP-12 cleavage at Ser4-Val5 activated the chemokine, promoting enhanced PMN early infiltration in wild-type mice compared with Mmp12−/− mice 8 hours after LPS challenge in air pouches. We propose that the macrophage, specifically through MMP-12, assists in orchestrating the regulation of acute inflammatory responses by precise proteolysis of ELR+CXC and CC chemokines.


Sign in / Sign up

Export Citation Format

Share Document