scholarly journals Expression of Type IV Pili by Moraxella catarrhalis Is Essential for Natural Competence and Is Affected by Iron Limitation

2004 ◽  
Vol 72 (11) ◽  
pp. 6262-6270 ◽  
Author(s):  
Nicole R. Luke ◽  
Amy J. Howlett ◽  
Jianqiang Shao ◽  
Anthony A. Campagnari

ABSTRACT Type IV pili, filamentous surface appendages primarily composed of a single protein subunit termed pilin, play a crucial role in the initiation of disease by a wide range of pathogenic bacteria. Although previous electron microscopic studies suggested that pili might be present on the surface of Moraxella catarrhalis isolates, detailed molecular and phenotypic analyses of these structures have not been reported to date. We identified and cloned the M. catarrhalis genes encoding PilA, the major pilin subunit, PilQ, the outer membrane secretin through which the pilus filament is extruded, and PilT, the NTPase that mediates pilin disassembly and retraction. To initiate investigation of the role of this surface organelle in pathogenesis, isogenic pilA, pilT, and pilQ mutants were constructed in M. catarrhalis strain 7169. Comparative analyses of the wild-type 7169 strain and three isogenic pil mutants demonstrated that M. catarrhalis expresses type IV pili that are essential for natural genetic transformation. Our studies suggest type IV pilus production by M. catarrhalis is constitutive and ubiquitous, although pilin expression was demonstrated to be iron responsive and Fur regulated. These data indicate that additional studies aimed at elucidating the prevalence and role of type IV pili in the pathogenesis and host response to M. catarrhalis infections are warranted.

2007 ◽  
Vol 75 (12) ◽  
pp. 5559-5564 ◽  
Author(s):  
Nicole R. Luke ◽  
Joseph A. Jurcisek ◽  
Lauren O. Bakaletz ◽  
Anthony A. Campagnari

ABSTRACT Moraxella catarrhalis is a gram-negative mucosal pathogen of the human respiratory tract. Although little information is available regarding the initial steps of M. catarrhalis pathogenesis, this organism must be able to colonize the human mucosal surface in order to initiate an infection. Type IV pili (TFP), filamentous surface appendages primarily comprised of a single protein subunit termed pilin, play a crucial role in the initiation of disease by a wide range of bacteria. We previously identified the genes that encode the major proteins involved in the biosynthesis of M. catarrhalis TFP and determined that the TFP expressed by this organism are highly conserved and essential for natural transformation. We extended this initial study by investigating the contribution of TFP to the early stages of M. catarrhalis colonization. TFP-deficient M. catarrhalis bacteria exhibit diminished adherence to eukaryotic cells in vitro. Additionally, our studies demonstrate that M. catarrhalis cells form a mature biofilm in continuous-flow chambers and that biofilm formation is enhanced by TFP expression. The potential role of TFP in colonization by M. catarrhalis was further investigated using in vivo studies comparing the abilities of wild-type M. catarrhalis and an isogenic TFP mutant to colonize the nasopharynx of the chinchilla. These results suggest that the expression of TFP contributes to mucosal airway colonization. Furthermore, these data indicate that the chinchilla model of nasopharyngeal colonization provides an effective animal system for studying the early steps of M. catarrhalis pathogenesis.


Author(s):  
Grace C.H. Yang

The size and organization of collagen fibrils in the extracellular matrix is an important determinant of tissue structure and function. The synthesis and deposition of collagen involves multiple steps which begin within the cell and continue in the extracellular space. High-voltage electron microscopic studies of the chick embryo cornea and tendon suggested that the extracellular space is compartmentalized by the fibroblasts for the regulation of collagen fibril, bundle, and tissue specific macroaggregate formation. The purpose of this study is to gather direct evidence regarding the association of the fibroblast cell surface with newly formed collagen fibrils, and to define the role of the fibroblast in the control and the precise positioning of collagen fibrils, bundles, and macroaggregates during chick tendon development.


Development ◽  
1974 ◽  
Vol 32 (1) ◽  
pp. 133-145
Author(s):  
Par Claude Chapron

Evidence for the role of an apical cap glycoprotein in amphibian regeneration: cytochemical and autoradiographic electron-microscopic studies Early during limb regeneration in the newt, an ectodermal apical cap covering a mesodermal blastema is formed. High-resolution autoradiography of these tissues has been carried out after incorporation of [3H]fucose, which is a precursor of glycoproteins. Autoradiography shows that silver particles are located at first on epithelial cells, then on mesenchymatous cells. This observation is consistent with a hypothesis in which the apical cap would elaborate a glycoprotein acting on the blastema. Substructural autoradiography and cytochemistry also show the importance of cellular surfaces for both cells producing glycoprotein and those which are target cells.


Genes ◽  
2011 ◽  
Vol 2 (4) ◽  
pp. 706-735 ◽  
Author(s):  
Saul Burdman ◽  
Ofir Bahar ◽  
Jennifer K. Parker ◽  
Leonardo De La Fuente

2006 ◽  
Vol 188 (17) ◽  
pp. 6326-6334 ◽  
Author(s):  
Sergei Korshunov ◽  
James A. Imlay

ABSTRACT Many gram-negative bacteria harbor a copper/zinc-containing superoxide dismutase (CuZnSOD) in their periplasms. In pathogenic bacteria, one role of this enzyme may be to protect periplasmic biomolecules from superoxide that is released by host phagocytic cells. However, the enzyme is also present in many nonpathogens and/or free-living bacteria, including Escherichia coli. In this study we were able to detect superoxide being released into the medium from growing cultures of E. coli. Exponential-phase cells do not normally synthesize CuZnSOD, which is specifically induced in stationary phase. However, the engineered expression of CuZnSOD in growing cells eliminated superoxide release, confirming that this superoxide was formed within the periplasm. The rate of periplasmic superoxide production was surprisingly high and approximated the estimated rate of cytoplasmic superoxide formation when both were normalized to the volume of the compartment. The rate increased in proportion to oxygen concentration, suggesting that the superoxide is generated by the adventitious oxidation of an electron carrier. Mutations that eliminated menaquinone synthesis eradicated the superoxide formation, while mutations in genes encoding respiratory complexes affected it only insofar as they are likely to affect the redox state of menaquinone. We infer that the adventitious autoxidation of dihydromenaquinone in the cytoplasmic membrane releases a steady flux of superoxide into the periplasm of E. coli. This endogenous superoxide may create oxidative stress in that compartment and be a primary substrate of CuZnSOD.


2021 ◽  
Author(s):  
Jennifer L. Chlebek ◽  
Triana N. Dalia ◽  
Nicolas Biais ◽  
Ankur B. Dalia

ABSTRACTBacteria utilize dynamic appendages called type IV pili (T4P) to interact with their environment and mediate a wide variety of functions. Pilus extension is mediated by an extension ATPase motor, commonly called PilB, in all T4P. Pilus retraction, however, can either occur with the aid of an ATPase motor, or in the absence of a retraction motor. While much effort has been devoted to studying motor-dependent retraction, the mechanism and regulation of motor-independent retraction remains poorly characterized. We have previously demonstrated that Vibrio cholerae competence T4P undergo motor-independent retraction in the absence of the dedicated retraction ATPases PilT and PilU. Here, we utilize this model system to characterize the factors that influence motor-independent retraction. We find that freshly extended pili frequently undergo motor-independent retraction, but if these pili fail to retract immediately, they remain statically extended on the cell surface. Importantly, we show that these static pili can still undergo motor-dependent retraction via tightly regulated ectopic expression of PilT, suggesting that these T4P are not broken, but simply cannot undergo motor-independent retraction. Through additional genetic and biophysical characterization of pili, we suggest that pilus filaments undergo conformational changes during dynamic extension and retraction. We propose that only some conformations, like those adopted by freshly extended pili, are capable of undergoing motor-independent retraction. Together, these data highlight the versatile mechanisms that regulate T4P dynamic activity and provide additional support for the long-standing hypothesis that motor-independent retraction occurs via spontaneous depolymerization.SIGNIFICANCEExtracellular pilus fibers are critical to the virulence and persistence of many pathogenic bacteria. A crucial function for most pili is the dynamic ability to extend and retract from the cell surface. Inhibiting this dynamic pilus activity represents an attractive approach for therapeutic interventions, however, a detailed mechanistic understanding of this process is currently lacking. Here, we use the competence pilus of Vibrio cholerae to study how pili retract in the absence of dedicated retraction motors. Our results reveal a novel regulatory mechanism of pilus retraction that is an inherent property of the external pilus filament. Thus, understanding the conformational changes that pili adopt under different conditions may be critical for the development of novel therapeutics that aim to target the dynamic activity of these structures.


2007 ◽  
Vol 189 (3) ◽  
pp. 249-261 ◽  
Author(s):  
José F. da Silva Neto ◽  
Tie Koide ◽  
Cecília M. Abe ◽  
Suely L. Gomes ◽  
Marilis V. Marques

2009 ◽  
Vol 22 (1) ◽  
pp. 73-85 ◽  
Author(s):  
Amit Das ◽  
Nandini Rangaraj ◽  
Ramesh V. Sonti

Xanthomonas oryzae pv. oryzae is the causal agent of bacterial blight of rice. We have used enhanced green fluorescent protein-tagged X. oryzae pv. oryzae cells in conjunction with confocal microscopy to monitor the role of several adhesin-like functions in bacterial adhesion to leaf surface and early stages of leaf entry. Mutations in genes encoding either the Xanthomonas adhesin-like protein A (XadA) or its paralog, Xanthomonas adhesin-like protein B (XadB), as well as the X. oryzae pv. oryzae homolog of Yersinia autotransporter-like protein H (YapH), exhibit deficiencies in leaf attachment or entry. A mutation in the X. oryzae pv. oryzae pilQ gene, which is predicted to encode the type IV pilus secretin, appears to have no effect on leaf attachment or entry. The xadA– mutant is deficient in the ability to cause disease following surface inoculation while the XadB, YapH, and PilQ functions are less important than XadA for this process. The xadA– and xadB– mutants have no effect on virulence following wound inoculation whereas the yapH– and pilQ– mutants are always virulence deficient following wound inoculation. Overall, these results indicate that multiple adhesin-like functions are involved in promoting virulence of X. oryzae pv. oryzae, with preferential involvement of individual functions at different stages of the disease process.


Microbiology ◽  
2010 ◽  
Vol 156 (4) ◽  
pp. 1040-1051 ◽  
Author(s):  
Khaled K. Mahmoud ◽  
Susan F. Koval

Bdellovibrio and like organisms (BALOs) are obligate prokaryotic predators of other Gram-negative bacteria. Bdellovibrio bacteriovorus is the most studied organism among BALOs. It has a periplasmic life cycle with two major stages: a motile, non-replicative stage spent searching for prey (the attack phase) and a stage spent inside the periplasm of the Gram-negative prey cell (the growth phase) after forming an osmotically stable body termed the bdelloplast. Within Bdellovibrio, there are also strains exhibiting an epibiotic life cycle. The genome sequence of the type strain B. bacteriovorus HD100T revealed the presence of multiple dispersed pil genes encoding type IV pili. Type IV pili in other bacteria are involved in adherence to and invasion of host cells and therefore can be considered to play a role in invasion of prey cells by Bdellovibrio. In this study, genes involved in producing type IV pili were identified in the periplasmic strain B. bacteriovorus 109J and an epibiotic Bdellovibrio sp. strain JSS. The presence of fibres on attack-phase cells was confirmed by examining negative stains of cells fixed with 10 % buffered formalin. Fibres were at the non-flagellated pole on approximately 25 % of attack-phase cells. To confirm that these fibres were type IV pili, a truncated form of PilA lacking the first 35 amino acids was designed to facilitate purification of the protein. The truncated PilA fused to a His-tag was overexpressed in Escherichia coli BL21(DE3) plysS. The fusion protein, accumulated in the insoluble fraction, was purified under denaturing conditions and used to produce polyclonal antisera. Immunoelectron microscopy showed that polar fibres present on the cell surface of the predator were composed of PilA, the major subunit of type IV pili. Immunofluorescence microscopy showed the presence of pilin on attack-phase cells of B. bacteriovorus 109J during attachment to prey cells and just after penetration, inside the bdelloplast. Antibodies against PilA delayed and inhibited predation in co-cultures of Bdellovibrio. This study confirms that type IV pili play a role in invasion of prey cells by Bdellovibrio.


Sign in / Sign up

Export Citation Format

Share Document