scholarly journals Role of Homologous Recombination in Adaptive Diversification of Extraintestinal Escherichia coli

2012 ◽  
Vol 195 (2) ◽  
pp. 231-242 ◽  
Author(s):  
Sandip Paul ◽  
Elena V. Linardopoulou ◽  
Mariya Billig ◽  
Veronika Tchesnokova ◽  
Lance B. Price ◽  
...  

ABSTRACTThe contribution of homologous exchange (recombination) of core genes in the adaptive evolution of bacterial pathogens is not well understood. To investigate this, we analyzed fully assembled genomes of twoEscherichia colistrains from sequence type 131 (ST131), a clonal group that is both the leading cause of extraintestinalE. coliinfections and the main source of fluoroquinolone-resistantE. coli. Although the sequences of each of the seven multilocus sequence typing genes were identical in the two ST131 isolates, the strains diverged from one another by homologous recombination that affected at least 9% of core genes. This was on a par with the contribution to genomic diversity of horizontal gene transfer and point gene mutation. The genomic positions of recombinant and mobile genetic regions were partially linked, suggesting their concurrent occurrence. One of the genes affected by homologous recombination wasfimH, which encodes mannose-specific type 1 fimbrial adhesin, resulting in functionally distinct copies of the gene in ST131 strains. One strain, a uropathogenic isolate, had a pathoadaptive variant offimHthat was acquired by homologous replacement into the commensal strain background. Close examination of FimH structure and function in additional ST131 isolates revealed that recombination led to acquisition of several functionally distinct variants that, upon homologous exchange, were targeted by a variety of pathoadaptive mutations under strong positive selection. Different recombinantfimHstrains also showed a strong clonal association with ST131 isolates that had distinct fluoroquinolone resistance profiles. Thus, homologous recombination of core genes plays a significant role in adaptive diversification of bacterial pathogens, especially at the level of clonally related groups of isolates.

2018 ◽  
Vol 62 (10) ◽  
Author(s):  
Shehara M. Mendis ◽  
Shawn Vasoo ◽  
Brian D. Johnston ◽  
Stephen B. Porter ◽  
Scott A. Cunningham ◽  
...  

ABSTRACT Escherichia coli bacteremia is caused mainly by sequence type complex 131 (STc131) and two clades within its fluoroquinolone-resistance-associated H30 subclone, H30R1 and H30Rx. We examined clinical and molecular correlates of E. coli bacteremia in two geographically distinct centers. We retrospectively studied 251 unique E. coli bloodstream isolates from 246 patients (48 from the Mayo Clinic, Rochester, MN [MN], and 198 from Tan Tock Seng Hospital, Singapore [SG]), from October 2013 through March 2014. Isolates underwent PCR for phylogroup, STc, blaCTX-M type, and virulence gene profiles, and medical records were reviewed. Although STc131 accounted for 25 to 27% of all E. coli bacteremia isolates at each site, its extended-spectrum-β-lactamase (ESBL)-associated H30Rx clade was more prominent in SG than in MN (15% versus 4%; P = 0.04). In SG only, patients with STc131 (versus other E. coli STc isolates) were more likely to receive inactive initial antibiotics (odds ratio, 2.8; P = 0.005); this was true specifically for patients with H30Rx (odds ratio, 7.0; P = 0.005). H30Rx comprised 16% of community-onset bacteremia episodes in SG but none in MN. In SG, virulence scores were higher for H30Rx than for H30R1, non-H30 STc131, and non-STc131 isolates (P < 0.02 for all comparisons). At neither site did mortality differ by clonal status. The ESBL-associated H30Rx clade was more prevalent and more often of community onset in SG, where it predicted inactive empirical treatment. The clonal distribution varies geographically and has potentially important clinical implications. Rapid susceptibility testing and clonal diagnostics for H30/H30Rx might facilitate earlier prescribing of active therapy.


2017 ◽  
Vol 5 (50) ◽  
Author(s):  
Jayanthi Gangiredla ◽  
Mark K. Mammel ◽  
Tammy J. Barnaba ◽  
Carmen Tartera ◽  
Solomon T. Gebru ◽  
...  

ABSTRACT Pathogenic and nonpathogenic Escherichia coli strains present a vast genomic diversity. We report the genome sequences of 2,244 E. coli isolates from multiple animal and environmental sources. Their phylogenetic relationships and potential risk to human health were examined.


2019 ◽  
Vol 201 (20) ◽  
Author(s):  
Charles T. Lauhon

ABSTRACT In bacteria, tRNAs that decode 4-fold degenerate family codons and have uridine at position 34 of the anticodon are typically modified with either 5-methoxyuridine (mo5U) or 5-methoxycarbonylmethoxyuridine (mcmo5U). These modifications are critical for extended recognition of some codons at the wobble position. Whereas the alkylation steps of these modifications have been described, genes required for the hydroxylation of U34 to give 5-hydroxyuridine (ho5U) remain unknown. Here, a number of genes in Escherichia coli and Bacillus subtilis are identified that are required for wild-type (wt) levels of ho5U. The yrrMNO operon is identified in B. subtilis as important for the biosynthesis of ho5U. Both yrrN and yrrO are homologs to peptidase U32 family genes, which includes the rlhA gene required for ho5C synthesis in E. coli. Deletion of either yrrN or yrrO, or both, gives a 50% reduction in mo5U tRNA levels. In E. coli, yegQ was found to be the only one of four peptidase U32 genes involved in ho5U synthesis. Interestingly, this mutant shows the same 50% reduction in (m)cmo5U as that observed for mo5U in the B. subtilis mutants. By analyzing the genomic context of yegQ homologs, the ferredoxin YfhL is shown to be required for ho5U synthesis in E. coli to the same extent as yegQ. Additional genes required for Fe-S biosynthesis and biosynthesis of prephenate give the same 50% reduction in modification. Together, these data suggest that ho5U biosynthesis in bacteria is similar to that of ho5C, but additional genes and substrates are required for complete modification. IMPORTANCE Modified nucleotides in tRNA serve to optimize both its structure and function for accurate translation of the genetic code. The biosynthesis of these modifications has been fertile ground for uncovering unique biochemistry and metabolism in cells. In this work, genes that are required for a novel anaerobic hydroxylation of uridine at the wobble position of some tRNAs are identified in both Bacillus subtilis and Escherichia coli. These genes code for Fe-S cluster proteins, and their deletion reduces the levels of the hydroxyuridine by 50% in both organisms. Additional genes required for Fe-S cluster and prephenate biosynthesis and a previously described ferredoxin gene all display a similar reduction in hydroxyuridine levels, suggesting that still other genes are required for the modification.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Yingbo Shen ◽  
Zuowei Wu ◽  
Yang Wang ◽  
Rong Zhang ◽  
Hong-Wei Zhou ◽  
...  

ABSTRACTThe recent emergence of a transferable colistin resistance mechanism, MCR-1, has gained global attention because of its threat to clinical treatment of infections caused by multidrug-resistant Gram-negative bacteria. However, the possible transmission route ofmcr-1amongEnterobacteriaceaespecies in clinical settings is largely unknown. Here, we present a comprehensive genomic analysis ofEscherichia coliisolates collected in a hospital in Hangzhou, China. We found thatmcr-1-carrying isolates from clinical infections and feces of inpatients and healthy volunteers were genetically diverse and were not closely related phylogenetically, suggesting that clonal expansion is not involved in the spread ofmcr-1. Themcr-1gene was found on either chromosomes or plasmids, but in most of theE. coliisolates,mcr-1was carried on plasmids. The genetic context of the plasmids showed considerable diversity as evidenced by the different functional insertion sequence (IS) elements, toxin-antitoxin (TA) systems, heavy metal resistance determinants, and Rep proteins of broad-host-range plasmids. Additionally, the genomic analysis revealed nosocomial transmission ofmcr-1and the coexistence ofmcr-1with other genes encoding β-lactamases and fluoroquinolone resistance in theE. coliisolates. These findings indicate thatmcr-1is heterogeneously disseminated in both commensal and pathogenic strains ofE. coli, suggest the high flexibility of this gene in its association with diverse genetic backgrounds of the hosts, and provide new insights into the genome epidemiology ofmcr-1among hospital-associatedE. colistrains.IMPORTANCEColistin represents one of the very few available drugs for treating infections caused by extensively multidrug-resistant Gram-negative bacteria. The recently emergentmcr-1colistin resistance gene threatens the clinical utility of colistin and has gained global attention. Howmcr-1spreads in hospital settings remains unknown and was investigated by whole-genome sequencing ofmcr-1-carryingEscherichia coliin this study. The findings revealed extraordinary flexibility ofmcr-1in its spread among genetically diverseE. colihosts and plasmids, nosocomial transmission ofmcr-1-carryingE. coli, and the continuous emergence of novel Inc types of plasmids carryingmcr-1and newmcr-1variants. Additionally,mcr-1was found to be frequently associated with other genes encoding β-lactams and fluoroquinolone resistance. These findings provide important information on the transmission and epidemiology ofmcr-1and are of significant public health importance as the information is expected to facilitate the control of this significant antibiotic resistance threat.


2017 ◽  
Vol 61 (8) ◽  
Author(s):  
Yasufumi Matsumura ◽  
Johann D. D. Pitout ◽  
Gisele Peirano ◽  
Rebekah DeVinney ◽  
Taro Noguchi ◽  
...  

ABSTRACT Escherichia coli sequence type 131 (ST131) is a pandemic clonal lineage that is responsible for the global increase in fluoroquinolone resistance and extended-spectrum-β-lactamase (ESBL) producers. The members of ST131 clade C, especially subclades C2 and C1-M27, are associated with ESBLs. We developed a multiplex conventional PCR assay with the ability to detect all ST131 clades (A, B, and C), as well as C subclades (C1-M27, C1-nM27 [C1-non-M27], and C2). To validate the assay, we used 80 ST131 global isolates that had been fully sequenced. We then used the assay to define the prevalence of each clade in two Japanese collections consisting of 460 ESBL-producing E. coli ST131 (2001-12) and 329 E. coli isolates from extraintestinal sites (ExPEC) (2014). The assay correctly identified the different clades in all 80 global isolates: clades A (n = 12), B (n = 12), and C, including subclades C1-M27 (n = 16), C1-nM27 (n = 20), C2 (n = 17), and other C (n = 3). The assay also detected all 565 ST131 isolates in both collections without any false positives. Isolates from clades A (n = 54), B (n = 23), and C (n = 483) corresponded to the O serotypes and the fimH types of O16-H41, O25b-H22, and O25b-H30, respectively. Of the 483 clade C isolates, C1-M27 was the most common subclade (36%), followed by C1-nM27 (32%) and C2 (15%). The C1-M27 subclade with bla CTX-M-27 became especially prominent after 2009. Our novel multiplex PCR assay revealed the predominance of the C1-M27 subclade in recent Japanese ESBL-producing E. coli isolates and is a promising tool for epidemiological studies of ST131.


mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Craig Stephens ◽  
Tyler Arismendi ◽  
Megan Wright ◽  
Austin Hartman ◽  
Andres Gonzalez ◽  
...  

ABSTRACT The evolution and propagation of antibiotic resistance by bacterial pathogens are significant threats to global public health. Contemporary DNA sequencing tools were applied here to gain insight into carriage of antibiotic resistance genes in Escherichia coli, a ubiquitous commensal bacterium in the gut microbiome in humans and many animals, and a common pathogen. Draft genome sequences generated for a collection of 101 E. coli strains isolated from healthy undergraduate students showed that horizontally acquired antibiotic resistance genes accounted for most resistance phenotypes, the primary exception being resistance to quinolones due to chromosomal mutations. A subset of 29 diverse isolates carrying acquired resistance genes and 21 control isolates lacking such genes were further subjected to long-read DNA sequencing to enable complete or nearly complete genome assembly. Acquired resistance genes primarily resided on F plasmids (101/153 [67%]), with smaller numbers on chromosomes (30/153 [20%]), IncI complex plasmids (15/153 [10%]), and small mobilizable plasmids (5/153 [3%]). Nearly all resistance genes were found in the context of known transposable elements. Very few structurally conserved plasmids with antibiotic resistance genes were identified, with the exception of an ∼90-kb F plasmid in sequence type 1193 (ST1193) isolates that appears to serve as a platform for resistance genes and may have virulence-related functions as well. Carriage of antibiotic resistance genes on transposable elements and mobile plasmids in commensal E. coli renders the resistome highly dynamic. IMPORTANCE Rising antibiotic resistance in human-associated bacterial pathogens is a serious threat to our ability to treat many infectious diseases. It is critical to understand how acquired resistance genes move in and through bacteria associated with humans, particularly for species such as Escherichia coli that are very common in the human gut but can also be dangerous pathogens. This work combined two distinct DNA sequencing approaches to allow us to explore the genomes of E. coli from college students to show that the antibiotic resistance genes these bacteria have acquired are usually carried on a specific type of plasmid that is naturally transferrable to other E. coli, and likely to other related bacteria.


2014 ◽  
Vol 81 (2) ◽  
pp. 569-577 ◽  
Author(s):  
Lydia V. Rump ◽  
Narjol Gonzalez-Escalona ◽  
Wenting Ju ◽  
Fei Wang ◽  
Guojie Cao ◽  
...  

ABSTRACTEscherichia coliO157:H7 is, to date, the majorE. coliserotype causing food-borne human disease worldwide. Strains of O157 with other H antigens also have been recovered. We analyzed a collection of historic O157 strains (n= 400) isolated in the late 1980s to early 1990s in the United States. Strains were predominantly serotype O157:H7 (55%), and various O157:non-H7 (41%) serotypes were not previously reported regarding their pathogenic potential. Although lacking Shiga toxin (stx) andeaegenes, serotypes O157:H1, O157:H2, O157:H11, O157:H42, and O157:H43 carried several virulence factors (iha,terD, andhlyA) also found in virulent serotypeE. coliO157:H7. Pulsed-field gel electrophoresis (PFGE) showed the O157 serogroup was diverse, with strains with the same H type clustering together closely. Among non-H7 isolates, serotype O157:H43 was highly prevalent (65%) and carried important enterohemorrhagicE. coli(EHEC) virulence markers (iha,terD,hlyA, andespP). Isolates from two particular H types, H2 and H11, among the most commonly found non-O157 EHEC serotypes (O26:H11, O111:H11, O103:H2/H11, and O45:H2), unexpectedly clustered more closely with O157:H7 than other H types and carried several virulence genes. This suggests an early divergence of the O157 serogroup to clades with different pathogenic potentials. The appearance of important EHEC virulence markers in closely related H types suggests their virulence potential and suggests further monitoring of those serotypes not implicated in severe illness thus far.


2015 ◽  
Vol 59 (9) ◽  
pp. 5331-5339 ◽  
Author(s):  
Sarah M. Drawz ◽  
Stephen Porter ◽  
Michael A. Kuskowski ◽  
Brian Johnston ◽  
Connie Clabots ◽  
...  

ABSTRACTEscherichia colisequence type 13 (ST131), an emergent cause of multidrug-resistant extraintestinal infections, has important phylogenetic subsets, notably theH30 andH30Rx subclones, with distinctive resistance profiles and, possibly, clinical associations. To clarify the local prevalence of these ST131 subclones and their associations with antimicrobial resistance, ecological source, and virulence traits, we extensively characterized 233 consecutiveE. coliclinical isolates (July and August 2013) from the University of Minnesota Medical Center-Fairview Infectious Diseases and Diagnostic Laboratory, Minneapolis, MN, which serves three adjacent facilities (a children's hospital and low- and high-acuity adult facilities). ST131 accounted for 26% of the study isolates (more than any other clonal group), was distributed similarly by facility, and was closely associated with ciprofloxacin resistance and extended-spectrum β-lactamase (ESBL) production. TheH30 andH30Rx subclones accounted for most ST131 isolates and for the association of ST131 with fluoroquinolone resistance and ESBL production. Unlike ST131per se, these subclones were distributed differentially by hospital, being most prevalent at the high-acuity adult facility and were absent from the children's hospital. The virulence gene profiles of ST131 and its subclones were distinctive and more extensive than those of other fluoroquinolone-resistant or ESBL-producing isolates. Within ST131,blaCTX-M-15was confined toH30Rx isolates and otherblaCTX-Mvariants to non-RxH30 isolates. Pulsed-field gel electrophoresis documented a predominance of globally distributed pulsotypes and no local outbreak pattern. These findings help clarify the epidemiology, ecology, and bacterial correlates of theH30 andH30Rx ST131 subclones by documenting a high overall prevalence but significant segregation by facility, strong associations with fluoroquinolone resistance and specific ESBL variants, and distinctive virulence gene associations that may confer fitness advantages over other resistantE. coli.


2015 ◽  
Vol 59 (8) ◽  
pp. 4471-4480 ◽  
Author(s):  
James R. Johnson ◽  
Brian Johnston ◽  
Michael A. Kuskowski ◽  
Evgeni V. Sokurenko ◽  
Veronika Tchesnokova

ABSTRACTThe recent expansion of theH30 subclone ofEscherichia colisequence type 131 (ST131) and its CTX-M-15-associatedH30Rx subset remains unexplained. Although ST131H30 typically exhibits fluoroquinolone resistance, so do multiple otherE. colilineages that have not expanded similarly. To determine whetherH30 isolates have more intense fluoroquinolone resistance than other fluoroquinolone-resistantE. coliisolates and to identify possible mechanisms, we determined the MICs for four fluoroquinolones (ciprofloxacin, levofloxacin, moxifloxacin, and norfloxacin) among 89 well-characterized, genetically diverse fluoroquinolone-resistantE. coliisolates (48 non-H30 and 41H30 [23H30Rx and 18H30 non-Rx]). We compared the MICs with theH30 andH30Rx status, the presence/number of nonsynonymous mutations ingyrA,parC, andparE, the presence ofaac(6′)-1b-cr(an aminoglycoside/fluoroquinolone agent-modifying enzyme), and the efflux pump activity (measured as organic solvent tolerance [OST]). Among 1,518 recentE. coliclinical isolates, ST131H30 predominated clonally, both overall and among the fluoroquinolone-resistant isolates. Among the 89 study isolates, compared with non-H30 isolates,H30 isolates exhibited categorically higher MICs for all four fluoroquinolone agents, higher absolute ciprofloxacin and norfloxacin MICs, more nonsynonymous mutations ingyrA,parC, andparE(specificallygyrAD87N,parCE84V, andparEI529L), and a numerically higher prevalence of (H30Rx-associated)aac(6′)-1b-crbut lower OST scores. All putative resistance mechanisms were significantly associated with the MICs [foraac(6′)-1b-cr: ciprofloxacin and norfloxacin only].parCD87N corresponded with ST131H30 andparEI529L with ST131 generally. Thus, more intense fluoroquinolone resistance may provide ST131H30, especiallyH30Rx [ifaac(6′)-1b-crpositive], with subtle fitness advantages over other fluoroquinolone-resistantE. colistrains. This urges both parsimonious fluoroquinolone use and a search for other fitness-enhancing traits within ST131H30.


2021 ◽  
Vol 10 (37) ◽  
Author(s):  
Adriana Cabal ◽  
Nadine Peischl ◽  
Gerhard Rab ◽  
Anna Stöger ◽  
Burkhard Springer ◽  
...  

Extraintestinal Escherichia coli sequence type 1193 (ST1193) is an important source of fluoroquinolone resistance, which has emerged in recent years. We report the first draft genome sequence and annotation of a multidrug-resistant E. coli ST1193 strain obtained from a wastewater treatment plant in Austria.


Sign in / Sign up

Export Citation Format

Share Document