scholarly journals Functional Interactions between the Carbon and Iron Utilization Regulators, Crp and Fur, in Escherichia coli

2005 ◽  
Vol 187 (3) ◽  
pp. 980-990 ◽  
Author(s):  
Zhongge Zhang ◽  
Guillermo Gosset ◽  
Ravi Barabote ◽  
Claudio S. Gonzalez ◽  
William A. Cuevas ◽  
...  

ABSTRACT In Escherichia coli, the ferric uptake regulator (Fur) controls expression of the iron regulon in response to iron availability while the cyclic AMP receptor protein (Crp) regulates expression of the carbon regulon in response to carbon availability. We here identify genes subject to significant changes in expression level in response to the loss of both Fur and Crp. Many iron transport genes and several carbon metabolic genes are subject to dual control, being repressed by the loss of Crp and activated by the loss of Fur. However, the sodB gene, encoding superoxide dismutase, and the aceBAK operon, encoding the glyoxalate shunt enzymes, show the opposite responses, being activated by the loss of Crp and repressed by the loss of Fur. Several other genes including the sdhA-D, sucA-D, and fumA genes, encoding key constituents of the Krebs cycle, proved to be repressed by the loss of both transcription factors. Finally, the loss of both Crp and Fur activated a heterogeneous group of genes under σS control encoding, for example, the cyclopropane fatty acid synthase, Cfa, the glycogen synthesis protein, GlgS, the 30S ribosomal protein, S22, and the mechanosensitive channel protein, YggB. Many genes appeared to be regulated by the two transcription factors in an apparently additive fashion, but apparent positive or negative cooperativity characterized several putative Crp/Fur interactions. Relevant published data were evaluated, putative Crp and Fur binding sites were identified, and representative results were confirmed by real-time PCR. Molecular explanations for some, but not all, of these effects are provided.

2000 ◽  
Vol 182 (15) ◽  
pp. 4288-4294 ◽  
Author(s):  
Ying-Ying Chang ◽  
Johannes Eichel ◽  
John E. Cronan

ABSTRACT Cyclopropane fatty acids (CFAs) are generally synthesized as bacterial cultures enter stationary phase. In Escherichia coli, the onset of CFA synthesis results from increased transcription of cfa, the gene encoding CFA synthase. However, the increased level of CFA synthase activity is transient; the activity quickly declines to the basal level. We report that the loss of CFA activity is due to proteolytic degradation dependent on expression of the heat shock regulon. CFA synthase degradation is unaffected by mutations in the lon, clpP, andgroEL genes or by depletion of the intracellular ATP pools. It seems likely that CFA synthase is the target of an unidentified energy-independent heat shock regulon protease. This seems to be the first example of heat shock-dependent degradation of a normal biosynthetic enzyme.


2008 ◽  
Vol 191 (5) ◽  
pp. 1722-1724 ◽  
Author(s):  
Johan Timmermans ◽  
Laurence Van Melderen

ABSTRACT CsrA is a global posttranscriptional regulator of numerous physiological processes, such as glycogenesis and glycolysis. Here, we show that the csrA gene of Escherichia coli is essential for growth on LB and on synthetic medium containing glycolytic carbon sources. However, csrA is not necessary for growth on synthetic medium containing pyruvate, showing that the Krebs cycle is functional in the csrA::cat deletion mutant. Deletion of the glgCAP operon in the csrA::cat mutant restored the ability to grow on LB and on synthetic medium containing glycolytic carbon sources, showing that growth inhibition is due to an excess of glycogen synthesis.


1999 ◽  
Vol 181 (9) ◽  
pp. 2789-2796 ◽  
Author(s):  
Jian Song ◽  
Tianhui Xia ◽  
Roy A. Jensen

ABSTRACT Pterin 4a-carbinolamine dehydratase is bifunctional in mammals. In addition to playing a catalytic role in pterin recycling in the cytoplasm, it plays a regulatory role in the nucleus, where it acts as a dimerization-cofactor component (called DCoH) for the transcriptional activator HNF-1α. A thus far unique operon in Pseudomonas aeruginosa contains a gene encoding a homolog (PhhB) of the regulatory dehydratase, together with genes encoding phenylalanine hydroxylase (PhhA) and aromatic aminotransferase (PhhC). Using complementation of tyrosine auxotrophy in Escherichia colias a functional test, we have found that the in vivo function of PhhA requires PhhB. Strikingly, mammalian DCoH was an effective substitute for PhhB, and either one was effective in trans. Surprisingly, the required presence of PhhB for complementation did not reflect a critical positive regulatory effect of phhB onphhA expression. Rather, in the absence of PhhB, PhhA was found to be extremely toxic in E. coli, probably due to the nonenzymatic formation of 7-biopterin or a similar derivative. However, bacterial PhhB does appear to exert modest regulatory effects in addition to having a catalytic function. PhhB enhances the level of PhhA two- to threefold, as was demonstrated by gene inactivation ofphhB in P. aeruginosa and by comparison of the levels of expression of PhhA in the presence and absence of PhhB inEscherichia coli. Experiments using constructs having transcriptional and translational fusions with a lacZreporter indicated that PhhB activates PhhA at the posttranscriptional level. Regulation of PhhA and PhhB is semicoordinate; both PhhA and PhhB are induced coordinately in the presence of eitherl-tyrosine or l-phenylalanine, but PhhB exhibits a significant basal level of activity that is lacking for PhhA. Immunoprecipitation and affinity chromatography showed that PhhA and PhhB form a protein-protein complex.


2013 ◽  
Vol 13 (1) ◽  
pp. 53-65 ◽  
Author(s):  
Elodie Bovier ◽  
Carole H. Sellem ◽  
Adeline Humbert ◽  
Annie Sainsard-Chanet

ABSTRACT In Podospora anserina , the two zinc cluster proteins RSE2 and RSE3 are essential for the expression of the gene encoding the alternative oxidase ( aox ) when the mitochondrial electron transport chain is impaired. In parallel, they activated the expression of gluconeogenic genes encoding phosphoenolpyruvate carboxykinase ( pck ) and fructose-1,6-biphosphatase ( fbp ). Orthologues of these transcription factors are present in a wide range of filamentous fungi, and no other role than the regulation of these three genes has been evidenced so far. In order to better understand the function and the organization of RSE2 and RSE3, we conducted a saturated genetic screen based on the constitutive expression of the aox gene. We identified 10 independent mutations in 9 positions in rse2 and 11 mutations in 5 positions in rse3 . Deletions were generated at some of these positions and the effects analyzed. This analysis suggests the presence of central regulatory domains and a C-terminal activation domain in both proteins. Microarray analysis revealed 598 genes that were differentially expressed in the strains containing gain- or loss-of-function mutations in rse2 or rse3 . It showed that in addition to aox , fbp , and pck , RSE2 and RSE3 regulate the expression of genes encoding the alternative NADH dehydrogenase, a Zn 2 Cys 6 transcription factor, a flavohemoglobin, and various hydrolases. As a complement to expression data, a metabolome profiling approach revealed that both an rse2 gain-of-function mutation and growth on antimycin result in similar metabolic alterations in amino acids, fatty acids, and α-ketoglutarate pools.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. sci-34-sci-34
Author(s):  
Elizabeth A. Eklund

During myelopoiesis, differentiating phagocytes develop functional competence and undergo proliferation arrest and eventual programmed cell death. This process involves transcriptional regulation of genes which mediate the innate immune response, mitotic arrest, and apoptosis. A number of transcription factor families play important roles in regulating such genes, including Hox proteins and interferon regulatory factors (IRFs). Disordered expression of Hox proteins is associated with myeloid leukemogenesis. Hox proteins are homeodomain transcription factors that are organized in four paralog groups (A–D). Expression of HoxA7-11 (the ABD-HOXA genes) is characteristic of myeloid progenitors. ABD-HOXA transcription decreases with CD34+ to CD34− progression, and persistent expression of these genes is found in poor prognosis leukemia. Abd Hox proteins regulate genes that are involved in multiple aspects of myelopoiesis. For example, HoxA10 represses transcription of the genes encoding gp91phox and p67phox in myeloid progenitors (the CYBB and NCF2 genes, respectively). In contrast, HoxA9 activates transcription of these genes as differentiation proceeds. Since these are the rate-limiting NADPH oxidase components, HoxA proteins influence the innate immune response. HoxA10 activates transcription of the gene encoding Beta3 integrin, thereby further facilitating NADPH oxidase activation and influencing adhesion. HoxA10 also activates transcription of DUSP4, the gene encoding MAP kinase phosphatase 2 (Mkp2). Mkp2 antagonizes the activity of c-Jun N-terminal kinases (Jnk). Since HoxA10-activation of DUSP4 decreases during myelopoiesis, decreased Mkp2 expression in mature phagocytes facilitates apoptosis via Jnk. Interferon regulatory factors (IRF) also regulate multiple aspects of myelopoiesis. IRF1 and ICSBP/IRF8 activate transcription of the CYBB and NCF2 genes in cooperation with the ets protein PU.1. ICSBP/IRF8 also contributes to phagocyte function by activating genes encoding TLR4, IL12, and Nramp. Additionally, IRF proteins regulate cell cycle progression and proliferation. IRF2, ICSBP/IRF8, and PU.1 activate transcription of gene encoding Neurofibromin 1, thereby downregulating the proliferative response to cytokines such as GM-CSF, M-CSF, and G-CSF. ICSBP/IRF8 and PU.1 also activate the gene encoding Ink4b, thereby also influencing proliferation. In myeloid progenitors, ICSBP/IRF8 influences cell survival by repressing transcription of PTPN13, the gene encoding Fas-associated phosphatase 1 (Fap1), a Fas-antagonist. Decreased ICSBP/IRF8-induced PTPN13 repression during myelopoiesis increases susceptibility of mature phagocytes to Fas-induced apoptosis. Such studies reveal that multiple aspects of myelopoiesis are regulated by common sets of transcription factors. This may suggest therapeutic targets for myeloid leukemias or other disorders of myeloid development.


2004 ◽  
Vol 186 (20) ◽  
pp. 6698-6705 ◽  
Author(s):  
Jason A. Opdyke ◽  
Ju-Gyeong Kang ◽  
Gisela Storz

ABSTRACT A previous bioinformatics-based search for small RNAs in Escherichia coli identified a novel RNA named IS183. The gene encoding this small RNA is located between and on the opposite strand of genes encoding two transcriptional regulators of the acid response, gadX (yhiX) and gadW (yhiW). Given that IS183 is encoded in the gad gene cluster and because of its role in regulating acid response genes reported here, this RNA has been renamed GadY. We show that GadY exists in three forms, a long form consisting of 105 nucleotides and two processed forms, consisting of 90 and 59 nucleotides. The expression of this small RNA is highly induced during stationary phase in a manner that is dependent on the alternative sigma factor σS. Overexpression of the three GadY RNA forms resulted in increased levels of the mRNA encoding the GadX transcriptional activator, which in turn caused increased levels of the GadA and GadB glutamate decarboxylases. A promoter mutation which abolished gadY expression resulted in a reduction in the amount of gadX mRNA during stationary phase. The gadY gene was shown to overlap the 3′ end of the gadX gene, and this overlap region was found to be necessary for the GadY-dependent accumulation of gadX mRNA. We suggest that during stationary phase, GadY forms base pairs with the 3′-untranslated region of the gadX mRNA and confers increased stability, allowing for gadX mRNA accumulation and the increased expression of downstream acid resistance genes.


2005 ◽  
Vol 187 (4) ◽  
pp. 1465-1473 ◽  
Author(s):  
David Dauvillée ◽  
Isabelle S. Kinderf ◽  
Zhongyi Li ◽  
Behjat Kosar-Hashemi ◽  
Michael S. Samuel ◽  
...  

ABSTRACT A role for the Escherichia coli glgX gene in bacterial glycogen synthesis and/or degradation has been inferred from the sequence homology between the glgX gene and the genes encoding isoamylase-type debranching enzymes; however, experimental evidence or definition of the role of the gene has been lacking. Construction of E. coli strains with defined deletions in the glgX gene is reported here. The results show that the GlgX gene encodes an isoamylase-type debranching enzyme with high specificity for hydrolysis of chains consisting of three or four glucose residues. This specificity ensures that GlgX does not generate an extensive futile cycle during glycogen synthesis in which chains with more than four glucose residues are transferred by the branching enzyme. Disruption of glgX leads to overproduction of glycogen containing short external chains. These results suggest that the GlgX protein is predominantly involved in glycogen catabolism by selectively debranching the polysaccharide outer chains that were previously recessed by glycogen phosphorylase.


Genetics ◽  
1996 ◽  
Vol 143 (2) ◽  
pp. 627-635 ◽  
Author(s):  
Maryann Giel ◽  
Martine Desnoyer ◽  
Jane Lopilato

Abstract A new mutation, bglJ4, has been characterized that results in the expression of the silent bgl operon. The bgl operon encodes proteins necessary for the transport and utilization of the aromatic β-glucosides arbutin and salicin. A variety of mutations activate the operon and result in a Bgl+ phenotype. Activating mutations are located upstream of the bgl promoter and in genes located elsewhere on the chromosome. Mutations outside of the bgl operon occur in the genes encoding DNA gyrase and in the gene encoding the nucleoid associated protein H-NS. The mutation described here, bglJ4, has been mapped to a new locus at min 99 on the Escherichia coli K-12 genetic map. The putative protein encoded by the bgygene has homolgy to a family of transcriptional activators. Evidence is presented that increased expression of the bglJ product is needed for activation of the bgl operon.


2021 ◽  
Vol 57 (2) ◽  
pp. 161-169
Author(s):  
A. Yu. Gulevich ◽  
A. Yu. Skorokhodova ◽  
V. G. Debabov

Abstract The microaerobic synthesis of 3-hydroxybutyric acid by the Escherichia coli strain BOX3.1 ∆4 PL-atoB PL-tesB (MG1655 lacIQ, ∆ackA-pta, ∆poxB, ∆ldhA, ∆adhE, ∆fadE, PL-SDphi10-atoB, Ptrc-ideal-4-SDphi10-fadB, PL-SDphi10-tesB), which was previously directly engineered for the biosynthesis of the target compound from glucose through the reversed fatty acid β-oxidation pathway, was studied. A target product yield of 0.12 mol/mol was achieved. Inactivation of the nonspecific YciA thioesterase gene in the strain led to an increase in the yield of 3-hydroxybutyric acid to 0.15 mol/mol. For the optimization of biosynthesis of target product the strain MG∆4 PL-tesB (MG1655 ∆ackA-pta, ∆poxB, ∆ldhA, ∆adhE, PL-SDphi10-tesB) was engineered, and the genes encoding key enzymes of fatty acid β-oxidation were overexpressed in the strain from the plasmid pMW118m-atoB-fadB. The level of microaerobic synthesis of 3-hydroxybutyric acid by the strain MG∆4 PL-tesB (pMW118m-atoB-fadB) achieved in primary evaluation conditions reached 0.35 mol/mol. Inactivation in the strain of the gene of nonspecific thioesterase YciA led to only minor decrease in acetate byproduction. Further inactivation in the strain of gene encoding nonspecific thioesterase YdiI had virtually no effect on the level of synthesis of side products. Cultivation of the constructed strain MG∆4 PL-tesB ∆yciA (pMW118m-atoB-fadB) in bioreactor under the controlled conditions ensured achievement of a yield of 3‑hydroxybutyric acid amounting to 0.75 mol/mol.


2019 ◽  
Vol 116 (48) ◽  
pp. 24164-24173 ◽  
Author(s):  
Juhan Kim ◽  
Jake J. Flood ◽  
Michael R. Kristofich ◽  
Cyrus Gidfar ◽  
Andrew B. Morgenthaler ◽  
...  

PdxB (erythronate 4-phosphate dehydrogenase) is expected to be required for synthesis of the essential cofactor pyridoxal 5′-phosphate (PLP) in Escherichia coli. Surprisingly, incubation of the ∆pdxB strain in medium containing glucose as a sole carbon source for 10 d resulted in visible turbidity, suggesting that PLP is being produced by some alternative pathway. Continued evolution of parallel lineages for 110 to 150 generations produced several strains that grow robustly in glucose. We identified a 4-step bypass pathway patched together from promiscuous enzymes that restores PLP synthesis in strain JK1. None of the mutations in JK1 occurs in a gene encoding an enzyme in the new pathway. Two mutations indirectly enhance the ability of SerA (3-phosphoglycerate dehydrogenase) to perform a new function in the bypass pathway. Another disrupts a gene encoding a PLP phosphatase, thus preserving PLP levels. These results demonstrate that a functional pathway can be patched together from promiscuous enzymes in the proteome, even without mutations in the genes encoding those enzymes.


Sign in / Sign up

Export Citation Format

Share Document