scholarly journals Porcine Sapovirus-Induced Tight Junction Dissociation via Activation of RhoA/ROCK/MLC Signaling Pathway

2021 ◽  
Author(s):  
Muhammad Sharif ◽  
Yeong-Bin Baek ◽  
Ahsan Naveed ◽  
Nattan Stalin ◽  
Mun-Il Kang ◽  
...  

Tight junctions (TJs) are a major barrier and also an important portal of entry for different pathogens. Porcine sapovirus (PSaV) induces early disruption of the TJ integrity of polarized LLC-PK cells, allowing it to bind to the buried occludin co-receptors hidden beneath the TJs on the basolateral surface. However, the signaling pathways involved in the PSaV-induced TJ dissociation are not yet known. Here, we found that the RhoA/ROCK/MLC signaling pathway was activated in polarized LLC-PK cells during the early infection of PSaV Cowden strain in the presence of bile acid. Specific inhibitors of RhoA, ROCK, and MLC restored PSaV-induced reduction of transepithelial resistance, increase of paracellular flux, intracellular translocation of occludin, and lateral membrane lipid diffusion. Moreover, each inhibitor significantly reduced PSaV replication, as evidenced by a reduction in viral protein synthesis, genome copy number, and progeny viruses. The PKC/MLCK and RhoA/ROCK/MYPT signaling pathways, known to dissociate TJs, were not activated during early PSaV infection. Among the above signaling pathways, the RhoA/ROCK/MLC signaling pathway was only activated by PSaV in the absence of bile acid, and specific inhibitors of this signaling pathway restored early TJ dissociation. Our findings demonstrate that PSaV binding to cell surface receptors activates the RhoA/ROCK/MLC signaling pathway, which in turn disrupts TJ integrity via the contraction of the actomyosin ring. Our study contributes to understanding how PSaV enters the cells and will aid in developing efficient and affordable therapies against PSaV and other calicivirus infections. IMPORTANCE Porcine sapovirus (PSaV), one of the most important enteric pathogens, is known to disrupt tight junction (TJ) integrity to expose its buried co-receptor occludin in polarized LLC-PK cells. However, the cellular signaling pathways that facilitate TJ dissociation are not yet completely understood. Here, we demonstrate that early infection of PSaV in polarized LLC-PK cells in either the presence or absence of bile acids activates the RhoA/ROCK/MLC signaling pathway, whose inhibitors reverse the early PSaV infection-induced early dissociation of TJs and reduce PSaV replication. However, early PSaV infection did not activate the PKC/MLCK and RhoA/ROCK/MYPT signaling pathways, which are also known to dissociate TJs. This study provides a better understanding of the mechanism involved in early PSaV infection-induced disruption of TJs, which is important for controlling or preventing PSaV and other calicivirus infections.

2020 ◽  
Vol 27 ◽  
Author(s):  
Mohammad Kashif Iqubal ◽  
Aiswarya Chaudhuri ◽  
Ashif Iqubal ◽  
Sadaf Saleem ◽  
Madan Mohan Gupta ◽  
...  

: At present, skin cancer is a widespread malignancy in human beings. Among diverse population types, Caucasian populations are much more prone in comparison to darker skin populations due to the comparative lack of skin pigmentation. Skin cancer is divided into malignant and non-melanoma skin cancer, which is additionally categorized as basal and squamous cell carcinoma. The exposure to ultraviolet radiation, chemical carcinogen (polycyclic aromatic hydrocarbons, arsenic, tar, etc.), and viruses (herpes virus, human papillomavirus, and human T-cell leukemia virus type-1) are major contributing factors of skin cancer. There are distinct pathways available through which skin cancer develops, such as the JAKSTAT pathway, Akt pathway, MAPKs signaling pathway, Wnt signaling pathway, to name a few. Currently, several targeted treatments are available, such as monoclonal antibodies, which have dramatically changed the line of treatment of this disease but possess major therapeutic limitations. Thus, recently many phytochemicals have been evaluated either alone or in combination with the existing synthetic drugs to overcome their limitations and have found to play a promising role in the prevention and treatment. In this review, complete tracery of skin cancer, starting from the signaling pathways involved, newer developed drugs with their targets and limitations along with the emerging role of natural products alone or in combination as potent anticancer agents and their molecular mechanism involved has been discussed. Apart from this, various nanocargos have also been mentioned here, which can play a significant role in the management and treatment of different types of skin cancer.


Author(s):  
Md. Junaid ◽  
Yeasmin Akter ◽  
Syeda Samira Afrose ◽  
Mousumi Tania ◽  
Md. Asaduzzaman Khan

Background: AKT/PKB is an important enzyme with numerous biological functions, and its overexpression is related to the carcinogenesis. AKT stimulates different signaling pathways that are downstream of activated tyrosine kinases and phosphatidylinositol 3-kinase, hence functions as an important target for anti-cancer drugs. Objective: In this review article, we have interpreted the role of AKT signaling pathways in cancer and natural inhibitory effect of Thymoquinone (TQ) in AKT and its possible mechanism. Method: We have collected the updated information and data on AKT, their role in cancer and inhibitory effect of TQ in AKT signaling pathway from google scholar, PubMed, Web of Science, Elsevier, Scopus and many more. Results: There are many drugs already developed, which can target AKT, but very few among them have passed clinical trials. TQ is a natural compound, mainly found in black cumin, which has been found to have potential anti-cancer activities. TQ targets numerous signaling pathways, including AKT, in different cancers. In fact, many studies revealed that AKT is one of the major targets of TQ. The preclinical success of TQ suggests its clinical studies on cancer. Conclusion: This review article summarizes the role of AKT in carcinogenesis, its potent inhibitors in clinical trials, and how TQ acts as an inhibitor of AKT and TQ’s future as a cancer therapeutic drug.


2021 ◽  
Vol 476 (5) ◽  
pp. 2159-2170
Author(s):  
Qiangtang Chen ◽  
Yu Wu ◽  
Yachun Yu ◽  
Junxiang Wei ◽  
Wen Huang

AbstractHIV-1 transactivator protein (Tat) induces tight junction (TJ) dysfunction and amyloid-beta (Aβ) clearance dysfunction, contributing to the development and progression of HIV-1-associated neurocognitive disorder (HAND). The Rho/ROCK signaling pathway has protective effects on neurodegenerative disease. However, the underlying mechanisms of whether Rho/ROCK protects against HIV-1 Tat-caused dysfunction of TJ and neprilysin (NEP)/Aβ transfer receptor expression have not been elucidated. C57BL/6 mice were administered sterile saline (i.p., 100 μL) or Rho-kinase inhibitor hydroxyfasudil (HF) (i.p., 10 mg/kg) or HIV-1 Tat (i.v., 100 μg/kg) or HF 30 min before being exposed to HIV-1 Tat once a day for seven consecutive days. Evans Blue (EB) leakage was detected via spectrophotometer and brain slides in mouse brains. The protein and mRNA levels of zonula occludens-1 (ZO-1), occludin, NEP, receptor for advanced glycation end products (RAGE), and low-density lipoprotein receptor-related protein 1 (LRP1) in mouse brain microvessels were, respectively, analyzed by Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) analyses. Exposure of the mice to HIV-1 Tat increased the amount of EB leakage, EB fluorescence intensity, blood–brain barrier (BBB) permeability, as well as the RAGE protein and mRNA levels, and decreased the protein and mRNA levels of ZO-1, occludin, NEP, and LRP1 in mouse brain microvessels. However, these effects were weakened by Rho-kinase inhibitor HF. Taken together, these results provide information that the Rho/ROCK signaling pathway is involved in HIV-1 Tat-induced dysfunction of TJ and NEP/Aβ transfer receptor expression in the C57BL/6 mouse brain. These findings shed some light on potentiality of inhibiting Rho/Rock signaling pathway in handling HAND.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jingfang Dong ◽  
Lian Zhou ◽  
Aiqing Feng ◽  
Shaohong Zhang ◽  
Hua Fu ◽  
...  

Abstract Background Although panicle blast is more destructive to yield loss than leaf blast in rice, the cloned genes that function in panicle blast resistance are still very limited and the molecular mechanisms underlying panicle blast resistance remain largely unknown. Results In the present study, we have confirmed that the three Oxalate oxidase (OXO) genes, OsOXO2, OsOXO3 and OsOXO4 from a blast-resistant cultivar BC10 function in panicle blast resistance in rice. The expression of OsOXO2, OsOXO3 and OsOXO4 were induced by panicle blast inoculation. Subcellular localization analysis revealed that the three OXO proteins are all localized in the nucleus and cytoplasm. Simultaneous silencing of OsOXO2, OsOXO3 and OsOXO4 decreased rice resistance to panicle blast, whereas the OsOXO2, OsOXO3 and OsOXO4 overexpression rice plants individually showed enhanced panicle blast resistance. More H2O2 and higher expression levels of PR genes were observed in the overexpressing plants than in the control plants, while the silencing plants exhibited less H2O2 and lower expression levels of PR genes compared to the control plants. Moreover, phytohormone treatment and the phytohormone signaling related gene expression analysis showed that panicle blast resistance mediated by the three OXO genes was associated with the activation of JA and ABA signaling pathways but suppression of SA signaling pathway. Conclusion OsOXO2, OsOXO3 and OsOXO4 positively regulate panicle blast resistance in rice. The OXO genes could modulate the accumulation of H2O2 and expression levels of PR gene in plants. Moreover, the OXO genes mediated panicle blast resistance could be regulated by ABA, SA and JA, and may be associated with the activation of JA and ABA signaling pathways but suppression of the SA signaling pathway.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Liu ◽  
Hongmiao Ren ◽  
Jihao Ren ◽  
Tuanfang Yin ◽  
Bing Hu ◽  
...  

Cholesteatoma is a benign keratinizing and hyper proliferative squamous epithelial lesion of the temporal bone. Epidermal growth factor (EGF) is one of the most important cytokines which has been shown to play a critical role in cholesteatoma. In this investigation, we studied the effects of EGF on the proliferation of keratinocytes and EGF-mediated signaling pathways underlying the pathogenesis of cholesteatoma. We examined the expressions of phosphorylated EGF receptor (p-EGFR), phosphorylated Akt (p-Akt), cyclinD1, and proliferating cell nuclear antigen (PCNA) in 40 cholesteatoma samples and 20 samples of normal external auditory canal (EAC) epithelium by immunohistochemical method. Furthermore,in vitrostudies were performed to investigate EGF-induced downstream signaling pathways in primary external auditory canal keratinocytes (EACKs). The expressions of p-EGFR, p-Akt, cyclinD1, and PCNA in cholesteatoma epithelium were significantly increased when compared with those of control subjects. We also demonstrated that EGF led to the activation of the EGFR/PI3K/Akt/cyclinD1 signaling pathway, which played a critical role in EGF-induced cell proliferation and cell cycle progression of EACKs. Both EGFR inhibitor AG1478 and PI3K inhibitor wortmannin inhibited the EGF-induced EGFR/PI3K/Akt/cyclinD1 signaling pathway concomitantly with inhibition of cell proliferation and cell cycle progression of EACKs. Taken together, our data suggest that the EGFR/PI3K/Akt/cyclinD1 signaling pathway is active in cholesteatoma and may play a crucial role in cholesteatoma epithelial hyper-proliferation. This study will facilitate the development of potential therapeutic targets for intratympanic drug therapy for cholesteatoma.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Garima Sharma ◽  
Ashish Ranjan Sharma ◽  
Eun-Min Seo ◽  
Ju-Suk Nam

The Wnt signaling pathway is mediated by a family of secreted glycoproteins through canonical and noncanonical mechanism. The signaling pathways are regulated by various modulators, which are classified into two classes on the basis of their interaction with either Wnt or its receptors. Secreted frizzled-related proteins (sFRPs) are the member of class that binds to Wnt protein and antagonizes Wnt signaling pathway. The other class consists of Dickkopf (DKK) proteins family that binds to Wnt receptor complex. The present review discusses the disease related association of various polymorphisms in Wnt signaling modulators. Furthermore, this review also highlights that some of the sFRPs and DKKs are unable to act as an antagonist for Wnt signaling pathway and thus their function needs to be explored more extensively.


2010 ◽  
Vol 138 (5) ◽  
pp. S-273
Author(s):  
Stephanie Dahan ◽  
Jay C. Unkeless ◽  
Keren M. Rabinowitz ◽  
Paul M. Arnaboldi ◽  
Lloyd Mayer

Sign in / Sign up

Export Citation Format

Share Document