scholarly journals Coxsackievirus B Escapes the Infected Cell in Ejected Mitophagosomes

2017 ◽  
Vol 91 (24) ◽  
Author(s):  
Jon Sin ◽  
Laura McIntyre ◽  
Aleksandr Stotland ◽  
Ralph Feuer ◽  
Roberta A. Gottlieb

ABSTRACT Coxsackievirus B (CVB) is a common enterovirus that can cause various systemic inflammatory diseases. Because CVB lacks an envelope, it has been thought to be inherently cytolytic, wherein CVB can escape from the infected host cell only by causing it to rupture. In recent years, however, we and others have observed that various naked viruses, such as CVB, can trigger the release of infectious extracellular microvesicles (EMVs) that contain viral material. This mode of cellular escape has been suggested to allow the virus to be masked from the adaptive immune system. Additionally, we have previously reported that these viral EMVs have LC3, suggesting that they originated from autophagosomes. We now report that CVB-infected cells trigger DRP1-mediated fragmentation of mitochondria, which is a precursor to autophagic mitochondrial elimination (mitophagy). However, rather than being degraded by lysosomes, mitochondrion-containing autophagosomes are released from the cell. We believe that CVB localizes to mitochondria, induces mitophagy, and subsequently disseminates from the cell in an autophagosome-bound mitochondrion-virus complex. Suppressing the mitophagy pathway in HL-1 cardiomyocytes with either small interfering RNA (siRNA) or Mdivi-1 caused marked reduction in virus production. The findings in this study suggest that CVB subverts mitophagy machinery to support viral dissemination in released EMVs. IMPORTANCE Coxsackievirus B (CVB) can cause a number of life-threatening inflammatory diseases. Though CVB is well known to disseminate via cytolysis, recent reports have revealed a second pathway in which CVB can become encapsulated in host membrane components to escape the cell in an exosome-like particle. Here we report that these membrane-bound structures derive from mitophagosomes. Blocking various steps in the mitophagy pathway reduced levels of intracellular and extracellular virus. Not only does this study reveal a novel mechanism of picornaviral dissemination, but also it sheds light on new therapeutic targets to treat CVB and potentially other picornaviral infections.

Author(s):  
Paulo Victor Sgobbi de Souza ◽  
Bruno de Mattos Lombardi Badia ◽  
Igor Braga Farias ◽  
Eduardo Augusto Gonçalves ◽  
Wladimir Bocca Vieira de Rezende Pinto ◽  
...  

ABSTRACT Background: Acute hepatic porphyrias represent an expanding group of complex inherited metabolic disorders due to inborn errors of metabolism involving heme biosynthesis. Objective: We aimed to review the main clinical and therapeutic aspects associated with acute hepatic porphyrias. Methods: The authors provided a wide non-systematic review of current concepts and recently acquired knowledge about acute hepatic porphyrias. Results: Acute neurovisceral attacks are the most common and life-threatening presentation of this group and are often considered the main clinical manifestation by clinicians during differential diagnosis and the start of proper diagnostic work-up for acute porphyrias. However, atypical presentations with central nervous system involvement, neuropsychiatric disturbances, and some subtypes with photosensitivity usually make the definite diagnosis difficult and late. Early therapeutic interventions are essential during emergency treatment and intercritical periods to avoid recurrent severe presentations. The availability of new disease-modifying therapeutic proposals based on small interfering RNA (siRNA)-based therapies, complementary to the classic intravenous glucose infusion and hemin-based treatments, emphasizes the importance of early diagnosis and genetic counseling of patients. Conclusions: This review article highlights the main biochemical, pathophysiological, clinical, and therapeutic aspects of acute hepatic porphyrias in clinical practice.


2021 ◽  
Vol 9 ◽  
pp. 232470962110264
Author(s):  
Taylor Warmoth ◽  
Malvika Ramesh ◽  
Kenneth Iwuji ◽  
John S. Pixley

Macrophage activation syndrome (MAS) is a form of hemophagocytic lymphohistocytosis that occurs in patients with a variety of inflammatory rheumatologic conditions. Traditionally, it is noted in pediatric patients with systemic juvenile idiopathic arthritis and systemic lupus erythematous. It is a rapidly progressive and life-threatening syndrome of excess immune activation with an estimated mortality rate of 40% in children. It has become clear recently that MAS occurs in adult patients with underlying rheumatic inflammatory diseases. In this article, we describe 6 adult patients with likely underlying MAS. This case series will outline factors related to diagnosis, pathophysiology, and review present therapeutic strategies.


Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 151
Author(s):  
Alexie Mayor ◽  
Adélaïde Chesnay ◽  
Guillaume Desoubeaux ◽  
David Ternant ◽  
Nathalie Heuzé-Vourc’h ◽  
...  

Respiratorytract infections (RTIs) are frequent and life-threatening diseases, accounting for several millions of deaths worldwide. RTIs implicate microorganisms, including viruses (influenza virus, coronavirus, respiratory syncytial virus (RSV)), bacteria (Pseudomonas aeruginosa, Streptococcus pneumoniae, Staphylococcus aureus and Bacillus anthracis) and fungi (Pneumocystis spp., Aspergillus spp. and very occasionally Candida spp.). The emergence of new pathogens, like the coronavirus SARS-CoV-2, and the substantial increase in drug resistance have highlighted the critical necessity to develop novel anti-infective molecules. In this context, antibodies (Abs) are becoming increasingly important in respiratory medicine and may fulfill the unmet medical needs of RTIs. However, development of Abs for treating infectious diseases is less advanced than for cancer and inflammatory diseases. Currently, only three Abs have been marketed for RTIs, namely, against pulmonary anthrax and RSV infection, while several clinical and preclinical studies are in progress. This article gives an overview of the advances in the use of Abs for the treatment of RTIs, based on the analysis of clinical studies in this field. It describes the Ab structure, function and pharmacokinetics, and discusses the opportunities offered by the various Ab formats, Ab engineering and co-treatment strategies. Including the most recent literature, it finally highlights the strengths, weaknesses and likely future trends of a novel anti-RTI Ab armamentarium.


2019 ◽  
Vol 78 (5) ◽  
pp. 617-628 ◽  
Author(s):  
Erika Van Nieuwenhove ◽  
Vasiliki Lagou ◽  
Lien Van Eyck ◽  
James Dooley ◽  
Ulrich Bodenhofer ◽  
...  

ObjectivesJuvenile idiopathic arthritis (JIA) is the most common class of childhood rheumatic diseases, with distinct disease subsets that may have diverging pathophysiological origins. Both adaptive and innate immune processes have been proposed as primary drivers, which may account for the observed clinical heterogeneity, but few high-depth studies have been performed.MethodsHere we profiled the adaptive immune system of 85 patients with JIA and 43 age-matched controls with indepth flow cytometry and machine learning approaches.ResultsImmune profiling identified immunological changes in patients with JIA. This immune signature was shared across a broad spectrum of childhood inflammatory diseases. The immune signature was identified in clinically distinct subsets of JIA, but was accentuated in patients with systemic JIA and those patients with active disease. Despite the extensive overlap in the immunological spectrum exhibited by healthy children and patients with JIA, machine learning analysis of the data set proved capable of discriminating patients with JIA from healthy controls with ~90% accuracy.ConclusionsThese results pave the way for large-scale immune phenotyping longitudinal studies of JIA. The ability to discriminate between patients with JIA and healthy individuals provides proof of principle for the use of machine learning to identify immune signatures that are predictive to treatment response group.


2021 ◽  
pp. 239719832110394
Author(s):  
Silvia Bellando-Randone ◽  
Emanuel Della-Torre ◽  
Andra Balanescu

Systemic sclerosis is characterized by widespread fibrosis of the skin and internal organs, vascular impairment, and dysregulation of innate and adaptive immune system. Growing evidence indicates that T-cell proliferation and cytokine secretion play a major role in the initiation of systemic sclerosis, but the role of T helper 17 cells and of interleukin-17 cytokines in the development and progression of the disease remains controversial. In particular, an equally distributed body of literature supports both pro-fibrotic and anti-fibrotic effects of interleukin-17, suggesting a complex and nuanced role of this cytokine in systemic sclerosis pathogenesis that may vary depending on disease stage, target cells in affected organs, and inflammatory milieu. Although interleukin-17 already represents an established therapeutic target for several immune-mediated inflammatory diseases, more robust experimental evidence is required to clarify whether it may become an attractive therapeutic target for systemic sclerosis as well.


1985 ◽  
Vol 101 (1) ◽  
pp. 158-166 ◽  
Author(s):  
J P Caulfield ◽  
C M Cianci

We studied the adherence of human erythrocytes to larvae of the intravascular parasite Schistosoma mansoni by transmission microscopy, freeze fracture, and fluorescence techniques. In addition, we used the adherent cells to investigate the problem of host antigen acquisition. Schistosomula were cultured for from 24 to 48 h after transformation in order to clear the remnants of the cercarial glycocalyx. In some cases, the worms were preincubated with wheat germ agglutinin to promote adherence of the erythrocytes. The results were similar with and without the lectin except that more cells attached to the lectin-coated parasites. Erythrocytes adhered within a few hours and, unlike neutrophils, did not fuse with the parasite. A layer of 10-20-nm electron dense material separated the outer leaflets of the tegumental and plasma membranes. In addition, many deformed and lysed cells were seen on the parasite surface. The ability of the worm to acquire erythrocyte membrane constituents was tested with carbocyanine dyes, fluorescein covalently conjugated to glycophorin, monoclonal antibodies against B and H blood group glycolipids, and rabbit alpha-human erythrocyte IgG. In summary, glycophorin, erythrocyte proteins, and glycolipids were not transferred to the parasite membrane within 48 h. Carbocyanine dyes were rapidly transferred to the parasite with or without lectin preincubation. Thus, the dye in the worm membrane came from both adherent and nonadherent cells. These studies suggest that, in the absence of membrane fusion, the parasite may acquire some lipid molecules similar in structure to host membrane glycolipids by simple transfer through the medium but that B and H glycolipids and erythrocyte membrane proteins are not transferred from adhering cells to the worm.


Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 352
Author(s):  
Carolina F. F. A. Costa ◽  
Benedita Sampaio-Maia ◽  
Ricardo Araujo ◽  
Diana S. Nascimento ◽  
Joana Ferreira-Gomes ◽  
...  

Fibrosis is a pathological process associated with most chronic inflammatory diseases. It is defined by an excessive deposition of extracellular matrix proteins and can affect nearly every tissue and organ system in the body. Fibroproliferative diseases, such as intestinal fibrosis, liver cirrhosis, progressive kidney disease and cardiovascular disease, often lead to severe organ damage and are a leading cause of morbidity and mortality worldwide, for which there are currently no effective therapies available. In the past decade, a growing body of evidence has highlighted the gut microbiome as a major player in the regulation of the innate and adaptive immune system, with severe implications in the pathogenesis of multiple immune-mediated disorders. Gut microbiota dysbiosis has been associated with the development and progression of fibrotic processes in various organs and is predicted to be a potential therapeutic target for fibrosis management. In this review we summarize the state of the art concerning the crosstalk between intestinal microbiota and organ fibrosis, address the relevance of diet in different fibrotic diseases and discuss gut microbiome-targeted therapeutic approaches that are current being explored.


2020 ◽  
Author(s):  
Angelo Chora ◽  
Dora Pedroso ◽  
Nadja Pejanovic ◽  
Eleni Kyriakou ◽  
Henrique Colaço ◽  
...  

AbstractTranscriptional programs leading to induction of a large number of genes can be rapidly initiated by the activation of only few selected transcription factors. Upon stimulation of macrophages with microbial-associated molecular patterns (MAMPs), the activation of the nuclear factor kappa B (NF-κB) family of transcription factors triggers inflammatory responses that, left uncontrolled, can lead to excessive inflammation with life-threatening consequences for the host. Here we identify and characterize a novel effect of Anthracyclines, a class of drugs currently used as potent anticancer drugs, in the regulation of NF-κB transcriptional activity in BMDMs, in addition to the previously reported DNA damage and histone eviction. Anthracyclines, including Doxorubicin, Daunorubicin and Epirubicin, disturb the complexes formed between the NF-κB subunit RelA and its DNA binding sites, to limit NF-κB-dependent gene transcription during inflammatory responses, including of pivotal pro-inflammatory mediators such as TNF. We observed that suppression of inflammation can also be mediated by Aclarubicin, Doxorubicinone and the newly developed Dimethyl-doxorubicin, which share anticancer properties with the other Anthracyclines, but do not induce DNA damage in the tested concentrations. This novel mechanism of action of Anthracyclines, contributing to the reduction of inflammation, is thus independent of the activation of DNA damage responses and may be relevant for the development of novel strategies targeting immune-mediated inflammatory diseases.


2020 ◽  
Vol 21 (18) ◽  
pp. 6535
Author(s):  
Beatriz Lozano-Ruiz ◽  
José M. González-Navajas

Absent in melanoma 2 (AIM2) is a cytosolic receptor that recognizes double-stranded DNA (dsDNA) and triggers the activation of the inflammasome cascade. Activation of the inflammasome results in the maturation of inflammatory cytokines, such as interleukin (IL)-1 β and IL-18, and a form of cell death known as pyroptosis. Owing to the conserved nature of its ligand, AIM2 is important during immune recognition of multiple pathogens. Additionally, AIM2 is also capable of recognizing host DNA during cellular damage or stress, thereby contributing to sterile inflammatory diseases. Inflammation, either in response to pathogens or due to sterile cellular damage, is at the center of the most prevalent and life-threatening liver diseases. Therefore, during the last 15 years, the study of inflammasome activation in the liver has emerged as a new research area in hepatology. Here, we discuss the known functions of AIM2 in the pathogenesis of different hepatic diseases, including non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), hepatitis B, liver fibrosis, and hepatocellular carcinoma (HCC).


2019 ◽  
Vol 20 (14) ◽  
pp. 3394 ◽  
Author(s):  
Kübra Bunte ◽  
Thomas Beikler

Innate immunity represents the semi-specific first line of defense and provides the initial host response to tissue injury, trauma, and pathogens. Innate immunity activates the adaptive immunity, and both act highly regulated together to establish and maintain tissue homeostasis. Any dysregulation of this interaction can result in chronic inflammation and autoimmunity and is thought to be a major underlying cause in the initiation and progression of highly prevalent immune-mediated inflammatory diseases (IMIDs) such as psoriasis, rheumatoid arthritis, inflammatory bowel diseases among others, and periodontitis. Th1 and Th2 cells of the adaptive immune system are the major players in the pathogenesis of IMIDs. In addition, Th17 cells, their key cytokine IL-17, and IL-23 seem to play pivotal roles. This review aims to provide an overview of the current knowledge about the differentiation of Th17 cells and the role of the IL-17/IL-23 axis in the pathogenesis of IMIDs. Moreover, it aims to review the association of these IMIDs with periodontitis and briefly discusses the therapeutic potential of agents that modulate the IL-17/IL-23 axis.


Sign in / Sign up

Export Citation Format

Share Document