scholarly journals Mitochondrial Heat Shock Protein Machinery Hsp70/Hsp40 Is Indispensable for Proper Mitochondrial DNA Maintenance and Replication

mBio ◽  
2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Jiří Týč ◽  
Michele M. Klingbeil ◽  
Julius Lukeš

ABSTRACT  Mitochondrial chaperones have multiple functions that are essential for proper functioning of mitochondria. In the human-pathogenic protist Trypanosoma brucei, we demonstrate a novel function of the highly conserved machinery composed of mitochondrial heat shock proteins 70 and 40 (mtHsp70/mtHsp40) and the ATP exchange factor Mge1. The mitochondrial DNA of T. brucei, also known as kinetoplast DNA (kDNA), is represented by a single catenated network composed of thousands of minicircles and dozens of maxicircles packed into an electron-dense kDNA disk. The chaperones mtHsp70 and mtHsp40 and their cofactor Mge1 are uniformly distributed throughout the single mitochondrial network and are all essential for the parasite. Following RNA interference (RNAi)-mediated depletion of each of these proteins, the kDNA network shrinks and eventually disappears. Ultrastructural analysis of cells depleted for mtHsp70 or mtHsp40 revealed that the otherwise compact kDNA network becomes severely compromised, a consequence of decreased maxicircle and minicircle copy numbers. Moreover, we show that the replication of minicircles is impaired, although the lack of these proteins has a bigger impact on the less abundant maxicircles. We provide additional evidence that these chaperones are indispensable for the maintenance and replication of kDNA, in addition to their already known functions in Fe-S cluster synthesis and protein import. IMPORTANCE  Impairment or loss of mitochondrial DNA is associated with mitochondrial dysfunction and a wide range of neural, muscular, and other diseases. We present the first evidence showing that the entire mtHsp70/mtHsp40 machinery plays an important role in mitochondrial DNA replication and maintenance, a function likely retained from prokaryotes. These abundant, ubiquitous, and multifunctional chaperones share phenotypes with enzymes engaged in the initial stages of replication of the mitochondrial DNA in T. brucei.

mBio ◽  
2012 ◽  
Vol 3 (5) ◽  
Author(s):  
Kyle A. Zingaro ◽  
Eleftherios Terry Papoutsakis

ABSTRACT Strain tolerance to toxic metabolites is an important trait for many biotechnological applications, such as the production of solvents as biofuels or commodity chemicals. Engineering a complex cellular phenotype, such as solvent tolerance, requires the coordinated and tuned expression of several genes. Using combinations of heat shock proteins (HSPs), we engineered a semisynthetic stress response system in Escherichia coli capable of tolerating high levels of toxic solvents. Simultaneous overexpression of the HSPs GrpE and GroESL resulted in a 2-fold increase in viable cells (CFU) after exposure to 5% (vol/vol) ethanol for 24 h. Co-overexpression of GroESL and ClpB on coexisting plasmids resulted in 1,130%, 78%, and 25% increases in CFU after 24 h in 5% ethanol, 1% n-butanol, and 1% i-butanol, respectively. Co-overexpression of GrpE, GroESL, and ClpB on a single plasmid produced 200%, 390%, and 78% increases in CFU after 24 h in 7% ethanol, 1% n-butanol, or 25% 1,2,4-butanetriol, respectively. Overexpression of other autologous HSPs (DnaK, DnaJ, IbpA, and IbpB) alone or in combinations failed to improve tolerance. Expression levels of HSP genes, tuned through inducible promoters and the plasmid copy number, affected the effectiveness of the engineered stress response system. Taken together, these data demonstrate that tuned co-overexpression of GroES, GroEL, ClpB, and GrpE can be engaged to engineer a semisynthetic stress response system capable of greatly increasing the tolerance of E. coli to solvents and provides a starting platform for engineering customized tolerance to a wide variety of toxic chemicals. IMPORTANCE Microbial production of useful chemicals is often limited by the toxicity of desired products, feedstock impurities, and undesired side products. Improving tolerance is an essential step in the development of practical platform organisms for production of a wide range of chemicals. By overexpressing autologous heat shock proteins in Escherichia coli, we have developed a modular semisynthetic stress response system capable of improving tolerance to ethanol, n-butanol, and potentially other toxic solvents. Using this system, we demonstrate that a practical stress response system requires both tuning of individual gene components and a reliable framework for gene expression. This system can be used to seek out new interacting partners to improve the tolerance phenotype and can be used in the development of more robust solvent production strains.


2017 ◽  
Vol 83 (20) ◽  
Author(s):  
Ryan Mercer ◽  
Oanh Nguyen ◽  
Qixing Ou ◽  
Lynn McMullen ◽  
Michael G. Gänzle

ABSTRACT The locus of heat resistance (LHR) is a 15- to 19-kb genomic island conferring exceptional heat resistance to organisms in the family Enterobacteriaceae, including pathogenic strains of Salmonella enterica and Escherichia coli. The complement of LHR-comprising genes that is necessary for heat resistance and the stress-induced or growth-phase-induced expression of LHR-comprising genes are unknown. This study determined the contribution of the seven LHR-comprising genes yfdX1 GI, yfdX2, hdeD GI, orf11, trx GI, kefB, and psiE GI by comparing the heat resistances of E. coli strains harboring plasmid-encoded derivatives of the different LHRs in these genes. (Genes carry a subscript “GI” [genomic island] if an ortholog of the same gene is present in genomes of E. coli.) LHR-encoded heat shock proteins sHSP20, ClpKGI, and sHSPGI are not sufficient for the heat resistance phenotype; YfdX1, YfdX2, and HdeD are necessary to complement the LHR heat shock proteins and to impart a high level of resistance. Deletion of trx GI, kefB, and psiE GI from plasmid-encoded copies of the LHR did not significantly affect heat resistance. The effect of the growth phase and the NaCl concentration on expression from the putative LHR promoter p2 was determined by quantitative reverse transcription-PCR and by a plasmid-encoded p2:GFP promoter fusion. The expression levels of exponential- and stationary-phase E. coli cells were not significantly different, but the addition of 1% NaCl significantly increased LHR expression. Remarkably, LHR expression in E. coli was dependent on a chromosomal copy of evgA. In conclusion, this study improved our understanding of the genes required for exceptional heat resistance in E. coli and factors that increase their expression in food. IMPORTANCE The locus of heat resistance (LHR) is a genomic island conferring exceptional heat resistance to several foodborne pathogens. The exceptional level of heat resistance provided by the LHR questions the control of pathogens by current food processing and preparation techniques. The function of LHR-comprising genes and their regulation, however, remain largely unknown. This study defines a core complement of LHR-encoded proteins that are necessary for heat resistance and demonstrates that regulation of the LHR in E. coli requires a chromosomal copy of the gene encoding EvgA. This study provides insight into the function of a transmissible genomic island that allows otherwise heat-sensitive enteric bacteria, including pathogens, to lead a thermoduric lifestyle and thus contributes to the detection and control of heat-resistant enteric bacteria in food.


2013 ◽  
Vol 12 (5) ◽  
pp. 452-457 ◽  
Author(s):  
George A. Alexiou ◽  
George Vartholomatos ◽  
Kalliopi Stefanaki ◽  
Amalia Patereli ◽  
Lefkothea Dova ◽  
...  

Object Medulloblastoma (MB) is the most common malignant brain tumor in children. Heat shock proteins (HSPs) comprise a superfamily of proteins that serve as molecular chaperones and are overexpressed in a wide range of human cancers. The purpose of the present study was to investigate the expression of HSP27 (pSer82), HSP27 (pSer15), HSP40, HSP60, HSP70, HSP90-α, Akt, and phospho-Akt by multiplex bead array assay of MBs. The results of HSP and Akt expression were correlated with MB subtype; immunohistochemical expression of Ki-67 index, bcl-2, and p53; and patients' prognosis. Methods The authors retrospectively evaluated 25 children with MB who underwent surgery. Immunohistochemical analysis of Ki-67, p53, and bcl-2 expression was performed in all cases. By using multiplex bead array assay, a simultaneous detection of HSP27 (pSer82), HSP27 (pSer15), HSP40, HSP60, HSP70, HSP90-α, Akt, and phospho-Akt was performed. Results Medulloblastoma with extensive nodularity had significantly lower HSP27 (pSer15) expression (p = 0.039) but significantly higher HSP60 expression (p = 0.021) than classic MB. Large-cell MB had significantly higher HSP70 expression (p = 0.028) than classic MB. No significant difference was found between HSP27 (pSer82), HSP40, HSP90-α, Akt, or phospho-Akt expression and MB subtype. Large-cell MBs had significantly higher Ki-67 index compared with classic MBs (p = 0.033). When analyzing all MBs, there was a significant negative correlation between HSP27 (pSer15) and Ki-67 index (r = −0.475, p = 0.016); a significant positive correlation between HSP70 expression and Ki-67 index (r = 0.407, p = 0.043); and a significant positive correlation between HSP70 expression and bcl-2 index (r = 0.491, p = 0.023). Patients with large-cell MB had a worse survival than those with classic MB, but the difference did not reach statistical significance (p = 0.076). Conclusions A substantial expression of several HSPs in MB was observed. Given that HSPs represent an attractive strategy for anticancer therapy, further studies, involving larger series of patients, are obviously necessary to clarify the relationship of HSPs with tumor aggressiveness and prognosis.


2018 ◽  
Vol 84 (11) ◽  
Author(s):  
Oscar van Mastrigt ◽  
Marcel M. A. N. Lommers ◽  
Yorick C. de Vries ◽  
Tjakko Abee ◽  
Eddy J. Smid

ABSTRACTLactic acid bacteria can carry multiple plasmids affecting their performance in dairy fermentations. The expression of plasmid-borne genes and the activity of the corresponding proteins are severely affected by changes in the numbers of plasmid copies. We studied the impact of growth rate on the dynamics of plasmid copy numbers at high growth rates in chemostat cultures and down to near-zero growth rates in retentostat cultures. Five plasmids of the dairy strainLactococcus lactisFM03-V1 were selected, and these varied in size (3 to 39 kb), in replication mechanism (theta or rolling circle), and in putative (dairy-associated) functions. The copy numbers ranged from 1.5 to 40.5, and the copy number of theta-type replicating plasmids was negatively correlated to the plasmid size. Despite the extremely wide range of growth rates (0.0003 h−1to 0.6 h−1), the copy numbers of the five plasmids were stable and only slightly increased at near-zero growth rates, showing that the plasmid replication rate was strictly controlled. One low-copy-number plasmid, carrying a large exopolysaccharide gene cluster, was segregationally unstable during retentostat cultivations, reflected in a complete loss of the plasmid in one of the retentostat cultures. The copy number of the five plasmids was also hardly affected by varying the pH value, nutrient limitation, or the presence of citrate (maximum 2.2-fold), signifying the stability in copy number of the plasmids.IMPORTANCELactococcus lactisis extensively used in starter cultures for dairy fermentations. Important traits for the growth and survival ofL. lactisin dairy fermentations are encoded by genes located on plasmids, such as genes involved in lactose and citrate metabolism, protein degradation, oligopeptide uptake, and bacteriophage resistance. Because the number of plasmid copies could affect the expression of plasmid-borne genes, it is important to know the factors that influence the plasmid copy numbers. We monitored the plasmid copy numbers ofL. lactisat near-zero growth rates, characteristic for cheese ripening. Moreover, we analyzed the effects of pH, nutrient limitation, and the presence of citrate. This showed that the plasmid copy numbers were stable, giving insight into plasmid copy number dynamics in dairy fermentations.


2019 ◽  
Vol 20 (18) ◽  
pp. 4507 ◽  
Author(s):  
Lang ◽  
Guerrero-Giménez ◽  
Prince ◽  
Ackerman ◽  
Bonorino ◽  
...  

Heat shock protein (HSP) synthesis is switched on in a remarkably wide range of tumor cells, in both experimental animal systems and in human cancer, in which these proteins accumulate in high levels. In each case, elevated HSP concentrations bode ill for the patient, and are associated with a poor outlook in terms of survival in most cancer types. The significance of elevated HSPs is underpinned by their essential roles in mediating tumor cell intrinsic traits such as unscheduled cell division, escape from programmed cell death and senescence, de novo angiogenesis, and increased invasion and metastasis. An increased HSP expression thus seems essential for tumorigenesis. Perhaps of equal significance is the pronounced interplay between cancer cells and the tumor milieu, with essential roles for intracellular HSPs in the properties of the stromal cells, and their roles in programming malignant cells and in the release of HSPs from cancer cells to influence the behavior of the adjacent tumor and infiltrating the normal cells. These findings of a triple role for elevated HSP expression in tumorigenesis strongly support the targeting of HSPs in cancer, especially given the role of such stress proteins in resistance to conventional therapies.


2012 ◽  
Vol 78 (10) ◽  
pp. 3630-3637 ◽  
Author(s):  
Karol Krak ◽  
Martina Janoušková ◽  
Petra Caklová ◽  
Miroslav Vosátka ◽  
Helena Štorchová

ABSTRACTReal-time PCR in nuclear ribosomal DNA (nrDNA) is becoming a well-established tool for the quantification of arbuscular mycorrhizal (AM) fungi, but this genomic region does not allow the specific amplification of closely related genotypes. The large subunit of mitochondrial DNA (mtDNA) has a higher-resolution power, but mtDNA-based quantification has not been previously explored in AM fungi. We applied real-time PCR assays targeting the large subunit of mtDNA to monitor the DNA dynamics of two isolates ofGlomus intraradicessensu lato coexisting in the roots of medic (Medicago sativa). The mtDNA-based quantification was compared to quantification in nrDNA. The ratio of copy numbers determined by the nrDNA- and mtDNA-based assays consistently differed between the two isolates. Within an isolate, copy numbers of the nuclear and the mitochondrial genes were closely correlated. The two quantification approaches revealed similar trends in the dynamics of both isolates, depending on whether they were inoculated alone or together. After 12 weeks of cultivation, competition between the two isolates was observed as a decrease in the mtDNA copy numbers of one of them. The coexistence of two closely related isolates, which cannot be discriminated by nrDNA-based assays, was thus identified as a factor influencing the dynamics of AM fungal DNA in roots. Taken together, the results of this study show that real-time PCR assays targeted to the large subunit of mtDNA may become useful tools for the study of coexisting AM fungi.


2017 ◽  
Vol 373 (1738) ◽  
pp. 20160524 ◽  
Author(s):  
Stuart K. Calderwood

Heat shock proteins (HSPs) are found at elevated concentrations in tumour cells, and this increase reflects the proteotoxic stress experienced by the cells due to expanding levels of the mutated oncoproteins that drive tumorigenesis. The protection of oncogenic proteins by HSPs offers a window of vulnerability in tumour metabolism that has been exploited using Hsp90-targeting drugs. Such compounds have been shown to cause inhibition and degradation of a wide range of proteins essential for oncogenesis. Recently, Hsp90 has also been shown to be secreted by tumour cells and to interact in autocrine or paracrine manners with the surfaces of adjacent cells, leading to increased growth and metastasis. Future studies will address a number of key questions associated with these findings, including the relative importance of intracellular versus extracellular HSPs in tumorigenesis, as well as overcoming potential problems with normal tissue toxicity associated with Hsp90 drugs. Targeting individual members of HSP families and inactivating extracellular HSPs may be desirable future approaches that offer increased selectivity in targeting HSPs in cancer. This article is part of the theme issue ‘Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective’.


Author(s):  
Michał Rurek ◽  
Magdalena Czołpińska ◽  
Tomasz Andrzej Pawłowski ◽  
Włodzimierz Krzesiński ◽  
Tomasz Spiżewski

Complex proteomic and physiological approaches to study cold and heat stress responses in plant mitochondria are still limited. Variations in the mitochondrial proteome of cauliflower (Brassica oleracea var. botrytis) curds after cold and heat and after stress recovery were assayed by 2D PAGE in relation to respiratory parameters. Quantitative analysis of the mitochondrial proteome revealed numerous stress-affected protein spots. In cold alternative oxidase isoforms were extensively upregulated; major downregulations in the level of photorespiratory enzymes, porine isoforms, oxidative phosphorylation (OXPHOS) and some low-abundant proteins were observed. On the contrary, distinct proteins, including carbohydrate metabolism enzymes, heat-shock proteins, translation, protein import, and OXPHOS components were involved in heat response and recovery. Few metabolic regulations were suggested. Cauliflower plants appeared less susceptible to heat; closed stomata in heat stress resulted in moderate photosynthetic, but only minor respiratory impairments, however photosystem II performance was unaffected. Decreased photorespiration corresponded with proteomic alterations in cold. Our results show that cold and heat stress not only operate in diverse mode (exemplified by cold-specific accumulation of some heat shock proteins), but exert some associations on molecular and physiological levels. This implies more complex model of action of investigated stresses on plant mitochondria.


2019 ◽  
Vol 20 (23) ◽  
pp. 5843 ◽  
Author(s):  
Stephen John Bentley ◽  
Aileen Boshoff

The etiological agent of African trypanosomiasis, Trypanosoma brucei (Tb), has been identified to possess an expanded and diverse group of heat shock proteins, which have been implicated in cytoprotection, differentiation, and subsequently progression and transmission of the disease. Heat shock protein 70 (Hsp70) is a highly conserved and ubiquitous molecular chaperone that is important in maintaining protein homeostasis in the cell. Its function is regulated by a wide range of co-chaperones, and inhibition of these functions and interactions with co-chaperones are emerging as potential therapeutic targets for numerous diseases. This study sought to biochemically characterize the cytosolic TbHsp70 and TbHsp70.4 proteins and to investigate if they functionally co-operate with the Type I J-protein, Tbj2. Expression of TbHsp70 was shown to be heat inducible, while TbHsp70.4 was constitutively expressed. The basal ATPase activities of TbHsp70.4 and TbHsp70 were stimulated by Tbj2. It was further determined that Tbj2 functionally co-operated with TbHsp70 and TbHsp70.4 as the J-protein was shown to stimulate the ability of both proteins to mediate the refolding of chemically denatured β-galactosidase. This study provides further insight into this important class of proteins, which may contribute to the development of new therapeutic strategies to combat African Trypanosomiasis.


2016 ◽  
Vol 36 (7) ◽  
pp. 1064-1077 ◽  
Author(s):  
Luciano Galdieri ◽  
Tiantian Zhang ◽  
Daniella Rogerson ◽  
Ales Vancura

Regulation of mitochondrial biogenesis and respiration is a complex process that involves several signaling pathways and transcription factors as well as communication between the nuclear and mitochondrial genomes. Here we show that decreased expression of histones or a defect in nucleosome assembly in the yeastSaccharomyces cerevisiaeresults in increased mitochondrial DNA (mtDNA) copy numbers, oxygen consumption, ATP synthesis, and expression of genes encoding enzymes of the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). The metabolic shift from fermentation to respiration induced by altered chromatin structure is associated with the induction of the retrograde (RTG) pathway and requires the activity of the Hap2/3/4/5p complex as well as the transport and metabolism of pyruvate in mitochondria. Together, our data indicate that altered chromatin structure relieves glucose repression of mitochondrial respiration by inducing transcription of the TCA cycle and OXPHOS genes carried by both nuclear and mitochondrial DNA.


Sign in / Sign up

Export Citation Format

Share Document