scholarly journals Bmp2 Is Critical for the Murine Uterine Decidual Response

2007 ◽  
Vol 27 (15) ◽  
pp. 5468-5478 ◽  
Author(s):  
Kevin Y. Lee ◽  
Jae-Wook Jeong ◽  
Jinrong Wang ◽  
Lijiang Ma ◽  
James F. Martin ◽  
...  

ABSTRACT The process of implantation, necessary for all viviparous birth, consists of tightly regulated events, including apposition of the blastocyst, attachment to the uterine lumen, and differentiation of the uterine stroma. In rodents and primates the uterine stroma undergoes a process called decidualization. Decidualization, the process by which the uterine endometrial stroma proliferates and differentiates into large epithelioid decidual cells, is critical to the establishment of fetal-maternal communication and the progression of implantation. The role of bone morphogenetic protein 2 (Bmp2) in regulating the transformation of the uterine stroma during embryo implantation in the mouse was investigated by the conditional ablation of Bmp2 in the uterus using the (PR-cre) mouse. Bmp2 gene ablation was confirmed by real-time PCR analysis in the PR-cre; Bmp2 fl/fl (termed Bmp2 d/d ) uterus. While littermate controls average 0.9 litter of 6.2 ± 0.7 pups per month, Bmp2 d/d females are completely infertile. Analysis of the infertility indicates that whereas embryo attachment is normal in the Bmp2 d/d as in control mice, the uterine stroma is incapable of undergoing the decidual reaction to support further embryonic development. Recombinant human BMP2 can partially rescue the decidual response, suggesting that the observed phenotypes are not due to a developmental consequence of Bmp2 ablation. Microarray analysis demonstrates that ablation of Bmp2 leads to specific gene changes, including disruption of the Wnt signaling pathway, Progesterone receptor (PR) signaling, and the induction of prostaglandin synthase 2 (Ptgs2). Taken together, these data demonstrate that Bmp2 is a critical regulator of gene expression and function in the murine uterus.

2018 ◽  
Vol 48 (6) ◽  
pp. 2399-2408 ◽  
Author(s):  
Kai Wang ◽  
Zhan-Qing Yang ◽  
Hai-Fan Yu ◽  
Yu-Si Wang ◽  
Bin Guo ◽  
...  

Background/Aims: High mobility group box 1 (Hmgb1) is associated with a variety of physiological processes including embryonic development, cell proliferation and differentiation, but little information is available regarding its biological role in decidualization. Methods: In situ hybridization, real-time PCR, RNA interference, gene overexpression and MTS assay were used to analyze the spatiotemporal expression of Hmgb1 in mouse uterus during the pre-implantation period, and explore its function and regulatory mechanisms during uterine decidualization. Results: Hmgb1 mRNA was obviously observed in uterine epithelium on day 2 and 3 of pregnancy, but its expression was scarcely detected on day 4 of pregnancy. With the onset of embryo implantation, abundant Hmgb1 expression was noted in the subluminal stromal cells around the implanting blastocyst at implantation sites. Meanwhile, the accumulation of Hmgb1 mRNA was visualized in the decidual cells. Hmgb1 advanced the proliferation of uterine stromal cells and induced the expression of prolactin family 8, subfamily a, member 2 (Prl8a2), a reliable differentiation marker for decidualization. In uterine stromal cells, cAMP analogue 8-Br-cAMP up-regulated the expression of Hmgb1, but the up-regulation was abrogated by protein kinase A (PKA) inhibitor H89. Silencing of Hmgb1 by specific siRNA impeded the induction of 8-Br-cAMP on Prl8a2. Further analysis evidenced that Hmgb1 was a critical mediator of Kruppel-like factor 5 (Klf5) function in stromal differentiation. Knockdown of bone morphogenetic protein 2 (Bmp2) prevented the up-regulation of Prl8a2 elicited by Hmgb1 overexpression, whereas addition of exogenous recombinant Bmp2 protein (rBmp2) reversed the repression of Hmgb1 siRNA on Prl8a2 expression. Conclusion: Hmgb1 may play an important role during mouse uterine decidualization.


Reproduction ◽  
2018 ◽  
Author(s):  
Qianrong Qi ◽  
Yifan Yang ◽  
Kailin Wu ◽  
Qingzhen Xie

Recent studies revealed that TMEM16A is involved in several reproductive processes, including ovarian estrogen secretion and ovulation, sperm motility and acrosome reaction, fertilization, and myometrium contraction. However, little is known about the expression and function of TMEM16A in embryo implantation and decidualization. In this study, we focused on the expression and regulation of TMEM16A in mouse uterus during early pregnancy. We found that TMEM16A is up-regulated in uterine endometrium in response to embryo implantation and decidualization. Progesterone treatment could induce TMEM16A expression in endometrial stromal cells through progesterone receptor/c-Myc pathway, which is blocked by progesterone receptor antagonist or the inhibitor of c-Myc signaling pathway. Inhibition of TMEM16A by small molecule inhibitor (T16Ainh-A01) resulted in impaired embryo implantation and decidualization in mice. Treatment with either specific siRNA of Tmem16a or T16Ainh-A01 inhibited the decidualization and proliferation of mouse endometrial stromal cells. In conclusion, our results revealed that TMEM16A is involved in embryo implantation and decidualization in mice, compromised function of TMEM16A may lead to impaired embryo implantation and decidualization.


2018 ◽  
Vol 64 (3) ◽  
pp. 331-334
Author(s):  
Fedor Moiseenko ◽  
Vladislav Tyurin ◽  
Nikita Levchenko ◽  
Yevgeniy Levchenko ◽  
Aglaya Ievleva ◽  
...  

A patient with lung cancer carrying ROS1 translocation was treated by crizotinib and then subjected to surgery. Morphological analysis revealed pathologic complete response in surgically removed tissues, while PCR test provided convincing evidence for the presence of residual tumor cells. PCR analysis of lung cancer specific gene translocations allows carrying out highly sensitive and reliable monitoring of tumor disease during the course of treatment.


2021 ◽  
Vol 22 (11) ◽  
pp. 5902
Author(s):  
Stefan Nagel ◽  
Claudia Pommerenke ◽  
Corinna Meyer ◽  
Hans G. Drexler

Recently, we documented a hematopoietic NKL-code mapping physiological expression patterns of NKL homeobox genes in human myelopoiesis including monocytes and their derived dendritic cells (DCs). Here, we enlarge this map to include normal NKL homeobox gene expressions in progenitor-derived DCs. Analysis of public gene expression profiling and RNA-seq datasets containing plasmacytoid and conventional dendritic cells (pDC and cDC) demonstrated HHEX activity in both entities while cDCs additionally expressed VENTX. The consequent aim of our study was to examine regulation and function of VENTX in DCs. We compared profiling data of VENTX-positive cDC and monocytes with VENTX-negative pDC and common myeloid progenitor entities and revealed several differentially expressed genes encoding transcription factors and pathway components, representing potential VENTX regulators. Screening of RNA-seq data for 100 leukemia/lymphoma cell lines identified prominent VENTX expression in an acute myelomonocytic leukemia cell line, MUTZ-3 containing inv(3)(q21q26) and t(12;22)(p13;q11) and representing a model for DC differentiation studies. Furthermore, extended gene analyses indicated that MUTZ-3 is associated with the subtype cDC2. In addition to analysis of public chromatin immune-precipitation data, subsequent knockdown experiments and modulations of signaling pathways in MUTZ-3 and control cell lines confirmed identified candidate transcription factors CEBPB, ETV6, EVI1, GATA2, IRF2, MN1, SPIB, and SPI1 and the CSF-, NOTCH-, and TNFa-pathways as VENTX regulators. Live-cell imaging analyses of MUTZ-3 cells treated for VENTX knockdown excluded impacts on apoptosis or induced alteration of differentiation-associated cell morphology. In contrast, target gene analysis performed by expression profiling of knockdown-treated MUTZ-3 cells revealed VENTX-mediated activation of several cDC-specific genes including CSFR1, EGR2, and MIR10A and inhibition of pDC-specific genes like RUNX2. Taken together, we added NKL homeobox gene activities for progenitor-derived DCs to the NKL-code, showing that VENTX is expressed in cDCs but not in pDCs and forms part of a cDC-specific gene regulatory network operating in DC differentiation and function.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Timothy S. Breton ◽  
William G. B. Sampson ◽  
Benjamin Clifford ◽  
Anyssa M. Phaneuf ◽  
Ilze Smidt ◽  
...  

AbstractThe SREB (Super-conserved Receptors Expressed in Brain) family of G protein-coupled receptors is highly conserved across vertebrates and consists of three members: SREB1 (orphan receptor GPR27), SREB2 (GPR85), and SREB3 (GPR173). Ligands for these receptors are largely unknown or only recently identified, and functions for all three are still beginning to be understood, including roles in glucose homeostasis, neurogenesis, and hypothalamic control of reproduction. In addition to the brain, all three are expressed in gonads, but relatively few studies have focused on this, especially in non-mammalian models or in an integrated approach across the entire receptor family. The purpose of this study was to more fully characterize sreb genes in fish, using comparative genomics and gonadal expression analyses in five diverse ray-finned (Actinopterygii) species across evolution. Several unique characteristics were identified in fish, including: (1) a novel, fourth euteleost-specific gene (sreb3b or gpr173b) that likely emerged from a copy of sreb3 in a separate event after the teleost whole genome duplication, (2) sreb3a gene loss in Order Cyprinodontiformes, and (3) expression differences between a gar species and teleosts. Overall, gonadal patterns suggested an important role for all sreb genes in teleost testicular development, while gar were characterized by greater ovarian expression that may reflect similar roles to mammals. The novel sreb3b gene was also characterized by several unique features, including divergent but highly conserved amino acid positions, and elevated brain expression in puffer (Dichotomyctere nigroviridis) that more closely matched sreb2, not sreb3a. These results demonstrate that SREBs may differ among vertebrates in genomic structure and function, and more research is needed to better understand these roles in fish.


2021 ◽  
Author(s):  
Fang Wang ◽  
Shijie Li ◽  
Lingshuai Meng ◽  
Ye Kuang ◽  
Zhonghua Liu ◽  
...  

Implantation timing is key for a successful pregnancy. Short delay in embryo implantation caused by targeted gene ablation produced a cascading problem in the later stages of the pregnancy. Although several delayed implantation models have been established in wild mice, almost none of them is suitable for investigating the delay on the late events of pregnancy. Here, we report a new delayed implantation model established by the intraperitoneally administration of letrozole at 5 mg/kg body weight on the day 3 of pregnancy. In these mice, initiation of implantation was induced at will by the injection of estradiol (E2). When the estradiol (3 ng) was injected on day 4 of pregnancy (i.e., without delay), the embryo implantation restarted, and the pregnancy continued normally. However, high dose of estrogen (25 ng) caused compromised implantation. We also found that only 67% of the female mice could be pregnant normally and finally gave birth when the injection of estradiol (3 ng) was on day 5 of pregnancy (i.e., one day delay). Most of the failed pregnancies had impaired decidualization, decreased plasma progesterone levels and compromised angiogenesis. Progesterone supplementation could rescue decidualization failure in the mice. Collectively, we established a new model of delayed implantation by letrozole, which can be easily used to study the effect and mechanisms of delay of embryo implantation on the progression of late pregnancy events.


2021 ◽  
Author(s):  
Sean Thomas ◽  
Kathryn Wierenga ◽  
James Pestka ◽  
Andrew Olive

Alveolar macrophages (AMs) are tissue resident cells in the lungs derived from the fetal liver that maintain lung homeostasis and respond to inhaled stimuli. While the importance of AMs is undisputed, they remain refractory to standard experimental approaches and high-throughput functional genetics as they are challenging to isolate and rapidly lose AM properties in standard culture. This limitation hinders our understanding of key regulatory mechanisms that control AM maintenance and function. Here, we describe the development of a new model, fetal liver-derived alveolar-like macrophages (FLAMs), which maintains cellular morphologies, expression profiles, and functional mechanisms similar to murine AMs. FLAMs combine treatment with two key cytokines for AM maintenance, GM-CSF and TGFβ. We leveraged the long-term stability of FLAMs to develop functional genetic tools using CRISPR-Cas9-mediated gene editing. Targeted editing confirmed the role of AM-specific gene Marco and the IL-1 receptor Il1r1 in modulating the AM response to crystalline silica. Furthermore, a genome-wide knockout library using FLAMs identified novel genes required for surface expression of the AM marker Siglec-F, most notably those related to the peroxisome. Taken together, our results suggest that FLAMs are a stable, self-replicating model of AM function that enables previously impossible global genetic approaches to define the underlying mechanisms of AM maintenance and function.


2010 ◽  
Vol 298 (5) ◽  
pp. C1100-C1108 ◽  
Author(s):  
Cheng Liu ◽  
Robert P. Gersch ◽  
Thomas J. Hawke ◽  
Michael Hadjiargyrou

Mustn1 (Mustang, musculoskeletal temporally activated novel gene) was originally identified in fracture callus tissue, but its greatest expression is detected in skeletal muscle. Thus, we conducted experiments to investigate the expression and function of Mustn1 during myogenesis. Temporally, quantitative real-time PCR analysis of muscle samples from embryonic day 17 to 12 mo of age reveals that Mustn1 mRNA expression is greatest at 3 mo of age and beyond, consistent with the expression pattern of Myod. In situ hybridization shows abundant Mustn1 expression in somites and developing skeletal muscles, while in adult muscle, Mustn1 is localized to some peripherally located nuclei. Using RNA interference (RNAi), we investigated the function of Mustn1 in C2C12 myoblasts. Though silencing Mustn1 mRNA had no effect on myoblast proliferation, it did significantly impair myoblast differentiation, preventing myofusion. Specifically, when placed in low-serum medium for up to 6 days, Mustn1-silenced myoblasts elongated poorly and were mononucleated. In contrast, control RNAi-treated and parental myoblasts presented as large, multinucleated myotubes. Further supporting the morphological observations, immunocytochemistry of Mustn1-silenced cells demonstrated significant reductions in myogenin (Myog) and myosin heavy chain (Myhc) expression at 4 and 6 days of differentiation as compared with control and parental cells. The decreases in Myog and Myhc protein expression in Mustn1-silenced cells were associated with robust (∼3-fold or greater) decreases in the expression of Myod and desmin ( Des), as well as the myofusion markers calpain 1 ( Capn1), caveolin 3 ( Cav3), and cadherin 15 (M-cadherin; Cadh15). Overall, we demonstrate that Mustn1 is an essential regulator of myogenic differentiation and myofusion, and our findings implicate Myod and Myog as its downstream targets.


Sign in / Sign up

Export Citation Format

Share Document