scholarly journals Drosophila RB Proteins Repress Differentiation-Specific Genes via Two Different Mechanisms

2010 ◽  
Vol 30 (10) ◽  
pp. 2563-2577 ◽  
Author(s):  
Hangnoh Lee ◽  
Katsuhito Ohno ◽  
Yekaterina Voskoboynik ◽  
Linda Ragusano ◽  
Anna Martinez ◽  
...  

ABSTRACT The RB and E2F proteins play important roles in the regulation of cell division, cell death, and development by controlling the expression of genes involved in these processes. The mechanisms of repression by the retinoblastoma protein (pRB) have been extensively studied at cell cycle-regulated promoters. However, little is known about developmentally regulated E2F/RB genes. Here, we have taken advantage of the simplicity of the E2F/RB pathway in flies to inspect the regulation of differentiation-specific target genes. These genes are repressed by dE2F2/RBF and a recently identified RB-containing complex, dREAM/MMB, in a cell type- and cell cycle-independent manner. Our studies indicate that the mechanism of repression differs from that of cell cycle-regulated genes. We find that two different activities are involved in their regulation and that in proliferating cells, both are required to maintain repression. First, dE2F2/RBF and dREAM/MMB employ histone deacetylase (HDAC) activities at promoter regions. Remarkably, we have also uncovered an unconventional mechanism of repression by the Polycomb group (PcG) protein Enhancer of zeste [E(Z)], which is involved in silencing of these genes through the dimethylation of histone H3 Lys27 at nucleosomes located downstream of the transcription start sites (TSS).

2005 ◽  
Vol 170 (3) ◽  
pp. 367-378 ◽  
Author(s):  
Michael Hölzel ◽  
Michaela Rohrmoser ◽  
Martin Schlee ◽  
Thomas Grimm ◽  
Thomas Harasim ◽  
...  

Target genes of the protooncogene c-myc are implicated in cell cycle and growth control, yet the linkage of both is still unexplored. Here, we show that the products of the nucleolar target genes Pes1 and Bop1 form a stable complex with a novel member, WDR12 (PeBoW complex). Endogenous WDR12, a WD40 repeat protein, is crucial for processing of the 32S precursor ribosomal RNA (rRNA) and cell proliferation. Further, a conditionally expressed dominant-negative mutant of WDR12 also blocks rRNA processing and induces a reversible cell cycle arrest. Mutant WDR12 triggers accumulation of p53 in a p19ARF-independent manner in proliferating cells but not in quiescent cells. Interestingly, a potential homologous complex of Pes1–Bop1–WDR12 in yeast (Nop7p–Erb1p–Ytm1p) is involved in the control of ribosome biogenesis and S phase entry. In conclusion, the integrity of the PeBoW complex is required for ribosome biogenesis and cell proliferation in mammalian cells.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Yiming He ◽  
Mingxi Gan ◽  
Yanan Wang ◽  
Tong Huang ◽  
Jianbin Wang ◽  
...  

AbstractGrainyhead-like 1 (GRHL1) is a transcription factor involved in embryonic development. However, little is known about the biological functions of GRHL1 in cancer. In this study, we found that GRHL1 was upregulated in non-small cell lung cancer (NSCLC) and correlated with poor survival of patients. GRHL1 overexpression promoted the proliferation of NSCLC cells and knocking down GRHL1 inhibited the proliferation. RNA sequencing showed that a series of cell cycle-related genes were altered when knocking down GRHL1. We further demonstrated that GRHL1 could regulate the expression of cell cycle-related genes by binding to the promoter regions and increasing the transcription of the target genes. Besides, we also found that EGF stimulation could activate GRHL1 and promoted its nuclear translocation. We identified the key phosphorylation site at Ser76 on GRHL1 that is regulated by the EGFR-ERK axis. Taken together, these findings elucidate a new function of GRHL1 on regulating the cell cycle progression and point out the potential role of GRHL1 as a drug target in NSCLC.


2008 ◽  
Vol 191 (5) ◽  
pp. 1656-1665 ◽  
Author(s):  
Anand Ballal ◽  
Binata Ray ◽  
Adhar C. Manna

ABSTRACT The expression of genes involved in the pathogenesis of Staphylococcus aureus is controlled by global regulatory loci, including two-component regulatory systems and transcriptional regulators (e.g., sar family genes). Most members of the SarA family have been partially characterized and shown to regulate a large numbers of target genes. Here, we describe the characterization of sarZ, a sarA paralog from S. aureus, and its regulatory relationship with other members of its family. Expression of sarZ was growth phase dependent with maximal expression in the early exponential phase of growth. Transcription of sarZ was reduced in an mgrA mutant and returned to a normal level in a complemented mgrA mutant strain, which suggests that mgrA acts as an activator of sarZ transcription. Purified MgrA protein bound to the sarZ promoter region, as determined by gel shift assays. Among the sarA family of genes analyzed, inactivation of sarZ increased sarS transcription, while it decreased agr transcription. The expression of potential target genes involved in virulence was evaluated in single and double mutants of sarZ with mgrA, sarX, and agr. Northern and zymogram analyses indicated that the sarZ gene product played a role in regulating several virulence genes, particularly those encoding exoproteins. Gel shift assays demonstrated nonspecific binding of purified SarZ protein to the promoter regions of the sarZ-regulated target genes. These results demonstrate the important role played by SarZ in controlling regulatory and virulence gene expression in S. aureus.


2019 ◽  
Author(s):  
Sarah Morson ◽  
Yifei Yang ◽  
David J. Price ◽  
Thomas Pratt

AbstractThe 593 kbp16p11.2copy number variation (CNV) affects the gene dosage of 29 protein coding genes, with heterozygous16p11.2microduplication or microdeletion implicated in about 1% of autism spectrum disorder (ASD) cases. The16p11.2CNV is frequently associated with macrocephaly or microcephaly indicating early defects of neurogenesis may contribute to subsequent ASD symptoms, but it is unknown which16p11.2transcripts are expressed in progenitors and whose levels are likely, therefore, to influence neurogenesis. Analysis of human fetal gene expression data revealed that of all the16p11.2transcripts only two,ALDOAandKIF22, are significantly enriched in progenitors. To investigate the role ofALDOAandKIF22in human cerebral cortex development we used immunohistochemical staining to describe their expression in late first and early second trimester human cerebral cortex. KIF22 protein is restricted to proliferating cells with its levels increasing during the cell cycle and peaking at mitosis. ALDOA protein is expressed in all cell types and does not vary with cell-cycle phase. Our expression analysis suggests the hypothesis that the simultaneous changes in KIF22 and ALDOA dosage in cortical progenitors causes defects in neurogenesis that may contribute to ASD in16p11.2CNV patients.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3571-3571
Author(s):  
Sunil Muthusami ◽  
Chunhua Song ◽  
Xiaokang Pan ◽  
Chandrika S. Gowda ◽  
Kimberly J Payne ◽  
...  

Abstract B-cell acute lymphoblastic leukemia (B-ALL) is the most common childhood leukemia. Expression profiling has identified IKZF1 (Ikaros) as a major tumor suppressor in B-ALL and established reduced Ikaros function as a poor prognostic marker for this disease. Ikaros regulates expression of its target genes via chromatin remodeling. In vivo, Ikaros can form a complex with histone deacetylases HDAC1 and/or HDAC2 as well as the NuRD chromatin remodeling complex. The mechanisms by which Ikaros exerts its tumor suppressor function and regulates gene expression in B-ALL are unknown. Here we report the use of chromatin immunoprecipitation coupled with next generation sequencing (ChIP-SEQ) to identify genes that are regulated by Ikaros in vivo and to determine the role of Ikaros in chromatin remodeling in B-ALL. Results reveal that Ikaros binds to the promoter regions of a large number of genes that are critical for cell cycle progression. These include CDC2, CDC16, CDC25A, ANAPC1, and ANAPC7. Overexpression of Ikaros in leukemia cells resulted in transcriptional repression of Ikaros target genes. Results from luciferase reporter assays performed using the respective promoters of Ikaros target genes support a role for Ikaros as a transcriptional repressor of these genes. Downregulation of Ikaros by siRNA resulted in increased expression of Ikaros target genes that control cell cycle progression. These results suggest that Ikaros functions as a negative regulator of cell cycle progression by repressing transcription of cell cycle-promoting genes. Next, we studied how Ikaros binding affects the epigenetic signature at promoters of Ikaros target genes. Global epigenetic mapping showed that Ikaros binding at the promoter region of cell cycle-promoting genes is associated with the formation of one of two types of repressive epigenetic marks – either H3K27me3 or H3K9me3. While these epigenetic marks were mutually exclusive, they were both associated with the loss of H3K9 acetylation and transcriptional repression. Serial qChIP assays spanning promoters of the Ikaros target genes revealed that the presence of H3K27me3 is associated with Ikaros and HDAC1 binding, while the H3K9me3 modification is associated with Ikaros binding and the absence of HDAC1. ChIP-SEQ analysis of HDAC1 global genomic binding demonstrated that over 80% of H3K27me3 modifications at promoter regions are associated with HDAC1 binding at surrounding sites. The treatment of leukemia cells with the histone deacetylase inhibitor – trichostatin (TSA) resulted in a severe reduction of global levels of H3K27me3, as evidenced by Wesern blot. These data suggest that HDAC1 activity in leukemia is essential for the formation of repressive chromatin that is characterized by the presence of H3K27me3. Our data suggest that Ikaros binding at the promoters of its target genes can result in the formation of repressive chromatin by two distinct mechanisms: 1) direct Ikaros binding resulting in increased H3K9me3 or 2) Ikaros recruitment of HDAC1 with increased H3K27me3 modifications. These data suggest distinct mechanisms for the regulation of chromatin remodeling and target gene expression by Ikaros alone, and Ikaros in complex with HDAC1. In conclusion, the presented data suggest that HDAC1 has a key role in regulating cell cycle progression and proliferation in B-ALL. Our results identify novel, Ikaros-mediated mechanisms of epigenetic regulation that contribute to tumor suppression in leukemia. Supported by National Institutes of Health R01 HL095120, and the Four Diamonds Fund Endowment. Disclosures No relevant conflicts of interest to declare.


2002 ◽  
Vol 22 (12) ◽  
pp. 4334-4345 ◽  
Author(s):  
Tapan K. Chatterjee ◽  
Rory A. Fisher

ABSTRACT RGS12TS-S, an 1,157-amino-acid RGS protein (regulator of G protein signaling), is a nuclear protein that exhibits a unique pattern of subnuclear organization into nuclear foci or dots when expressed endogenously or ectopically. We now report that RGS12TS-S is a nuclear matrix protein and identify structural determinants that target this protein to the nuclear matrix and to discrete subnuclear sites. We also determine the relationship between RGS12TS-S-decorated nuclear dots and known subnuclear domains involved in control of gene expression and provide the first evidence that RGS12TS-S is functionally involved in the regulation of transcription and cell cycle events. A novel nuclear matrix-targeting sequence was identified that is distinct from a second novel motif needed for targeting RGS12TS-S to nuclear dots. RGS12TS-S nuclear dots were distinct from Cajal bodies, SC-35 domains, promyelocytic leukemia protein nuclear bodies, Polycomb group domains, and DNA replication sites. However, RGS12TS-S inhibited S-phase DNA synthesis in various tumor cell lines independently of Rb and p53 proteins, and its prolonged expression promoted formation of multinucleated cells. Expression of RGS12TS-S dramatically reduced bromo-UTP incorporation into sites of transcription. RGS12TS-S, when tethered to a Gal4 DNA binding domain, dramatically inhibited basal transcription from a Gal4-E1b TATA promoter in a histone deacetylase-independent manner. Structural analysis revealed a role for the unique N-terminal domain of RGS12TS-S in its transcriptional repressor and cell cycle-regulating activities and showed that the RGS domain was dispensable for these functions. These results provide novel insights into the structure and function of RGS12TS-S in the nucleus and demonstrate that RGS12TS-S possesses biological activities distinct from those of other members of the RGS protein family.


2017 ◽  
Vol 114 (38) ◽  
pp. E7949-E7958 ◽  
Author(s):  
Zhuo Zhang ◽  
Amanda E. Jones ◽  
Wei Wu ◽  
Jinman Kim ◽  
Yue Kang ◽  
...  

Posttranslational histone modifications play important roles in regulating chromatin-based nuclear processes. Histone H2AK119 ubiquitination (H2Aub) is a prevalent modification and has been primarily linked to gene silencing. However, the underlying mechanism remains largely obscure. Here we report the identification of RSF1 (remodeling and spacing factor 1), a subunit of the RSF complex, as a H2Aub binding protein, which mediates the gene-silencing function of this histone modification. RSF1 associates specifically with H2Aub, but not H2Bub nucleosomes, through a previously uncharacterized and obligatory region designated as ubiquitinated H2A binding domain. In human and mouse cells, genes regulated by RSF1 overlap significantly with those controlled by RNF2/Ring1B, the subunit of Polycomb repressive complex 1 (PRC1) which catalyzes the ubiquitination of H2AK119. About 82% of H2Aub-enriched genes, including the classic PRC1 targetHoxgenes, are bound by RSF1 around their transcription start sites. Depletion of H2Aub levels by Ring1B knockout results in a significant reduction of RSF1 binding. In contrast, RSF1 knockout does not affect RNF2/Ring1B or H2Aub levels but leads to derepression of H2Aub target genes, accompanied by changes in H2Aub chromatin organization and release of linker histone H1. The action of RSF1 in H2Aub-mediated gene silencing is further demonstrated by chromatin-based in vitro transcription. Finally, RSF1 and Ring1 act cooperatively to regulate mesodermal cell specification and gastrulation duringXenopusearly embryonic development. Taken together, these data identify RSF1 as a H2Aub reader that contributes to H2Aub-mediated gene silencing by maintaining a stable nucleosome pattern at promoter regions.


2022 ◽  
Vol 12 ◽  
Author(s):  
Zhi Qiao ◽  
Jinfeng Li ◽  
Hongwei Kou ◽  
Xiangrong Chen ◽  
Deming Bao ◽  
...  

Objective: Osteosarcoma is the most common malignancy in the skeletal system; studies showed an important role of miRNAs in tumorigenesis, indicating miRNAs as possible therapeutic molecules. This study found abnormal hsa-miR-557 expression levels in osteosarcoma and tried to explore the potential function and the mechanism.Methods: Differential expression genes of osteosarcoma were analyzed using GSE28423 from the GEO database. Survival analysis of miRNAs was conducted with data obtained from the TARGET-OS database. STRING and miRDIP were used to predict target genes of hsa-miR-557; KRAS was then verified using dual-luciferase reporter assay. Expression of genes was detected by qPCR, and levels of proteins were detected by Western blot. The proliferation ability of cells was detected by CCK-8 and cell cycle analysis. Tumor formation assay in nude mice was used to detect the influence of osteosarcoma by hsa-miR-557 in vivo.Results: Analysis from the GEO and TARGET databases found 12 miRNAs that are significantly related to the osteosarcoma prognosis, 7 downregulated (hsa-miR-140-3p, hsa-miR-564, hsa-miR-765, hsa-miR-1224-5p, hsa-miR-95, hsa-miR-940, and hsa-miR-557) and 5 upregulated (hsa-miR-362-3p, hsa-miR-149, hsa-miR-96, hsa-miR-744, and hsa-miR-769-5p). CCK-8 analysis and cell cycle analysis found that hsa-miR-557 could significantly inhibit the proliferation of osteosarcoma cells. The tumor formation assay in nude mice showed that tumor sizes and weights were inhibited by hsa-miR-557 transfection. Further studies also proved that hsa-miR-557 could target the 3′UTR of KRAS and modulate phosphorylation of downstream proteins.Conclusion: This study showed that hsa-miR-557 could inhibit osteosarcoma growth both in vivo and in vitro, by modulating KRAS expression.


2021 ◽  
Vol 22 (16) ◽  
pp. 9088
Author(s):  
Akhilesh Kumar ◽  
Candice G. T. Tahimic ◽  
Eduardo A. C. Almeida ◽  
Ruth K. Globus

Spaceflight causes cardiovascular changes due to microgravity-induced redistribution of body fluids and musculoskeletal unloading. Cardiac deconditioning and atrophy on Earth are associated with altered Trp53 and oxidative stress-related pathways, but the effects of spaceflight on cardiac changes at the molecular level are less understood. We tested the hypothesis that spaceflight alters the expression of key genes related to stress response pathways, which may contribute to cardiovascular deconditioning during extended spaceflight. Mice were exposed to spaceflight for 15 days or maintained on Earth (ground control). Ventricle tissue was harvested starting ~3 h post-landing. We measured expression of select genes implicated in oxidative stress pathways and Trp53 signaling by quantitative PCR. Cardiac expression levels of 37 of 168 genes tested were altered after spaceflight. Spaceflight downregulated transcription factor, Nfe2l2 (Nrf2), upregulated Nox1 and downregulated Ptgs2, suggesting a persistent increase in oxidative stress-related target genes. Spaceflight also substantially upregulated Cdkn1a (p21) and cell cycle/apoptosis-related gene Myc, and downregulated the inflammatory response gene Tnf. There were no changes in apoptosis-related genes such as Trp53. Spaceflight altered the expression of genes regulating redox balance, cell cycle and senescence in cardiac tissue of mice. Thus, spaceflight may contribute to cardiac dysfunction due to oxidative stress.


2004 ◽  
Vol 24 (20) ◽  
pp. 9124-9136 ◽  
Author(s):  
Barbie Taylor-Harding ◽  
Ulrich K. Binné ◽  
Michael Korenjak ◽  
Alexander Brehm ◽  
Nicholas J. Dyson

ABSTRACT Many proteins have been proposed to be involved in retinoblastoma protein (pRB)-mediated repression, but it is largely uncertain which cofactors are essential for pRB to repress endogenous E2F-regulated promoters. Here we have taken advantage of the stream-lined Drosophila dE2F/RBF pathway, which has only two E2Fs (dE2F1 and dE2F2), and two pRB family members (RBF1 and RBF2). With RNA interference (RNAi), we depleted potential corepressors and looked for the elevated expression of groups of E2F target genes that are known to be directly regulated by RBF1 and RBF2. Previous studies have implicated histone deacetylase (HDAC) and SWI/SNF chromatin-modifying complexes in pRB-mediated repression. However, our results fail to support the idea that the SWI/SNF proteins are required for RBF-mediated repression and suggest that a requirement for HDAC activities is likely to be limited to a subset of targets. We found that the chromatin assembly factor p55/dCAF-1 is essential for the repression of dE2F2-regulated targets. The removal of p55 deregulated the expression of E2F targets that are normally repressed by dE2F2/RBF1 and dE2F2/RBF2 complexes in a cell cycle-independent manner but had no effect on the expression of E2F targets that are normally coupled with cell proliferation. The results indicate that the mechanisms of RBF regulation at these two types of E2F targets are different and suggest that p55, and perhaps p55's mammalian orthologs RbAp46 and RbAp48, have a conserved function in repression by pRB-related proteins.


Sign in / Sign up

Export Citation Format

Share Document