Double-stranded RNA unwinding and modifying activity is detected ubiquitously in primary tissues and cell lines

1990 ◽  
Vol 10 (10) ◽  
pp. 5586-5590
Author(s):  
R W Wagner ◽  
C Yoo ◽  
L Wrabetz ◽  
J Kamholz ◽  
J Buchhalter ◽  
...  

A double-stranded RNA unwinding and modifying activity was found to be present in a wide range of tissues and cell types. The level of activity did not vary significantly with respect to the state of cell differentiation, cell cycle, or transformation. Thus, the unwinding and modifying activity, localized in the nucleus in somatic cells and capable of converting many adenosine residues to inosine, appears to be one of the housekeeping genes.

1990 ◽  
Vol 10 (10) ◽  
pp. 5586-5590 ◽  
Author(s):  
R W Wagner ◽  
C Yoo ◽  
L Wrabetz ◽  
J Kamholz ◽  
J Buchhalter ◽  
...  

A double-stranded RNA unwinding and modifying activity was found to be present in a wide range of tissues and cell types. The level of activity did not vary significantly with respect to the state of cell differentiation, cell cycle, or transformation. Thus, the unwinding and modifying activity, localized in the nucleus in somatic cells and capable of converting many adenosine residues to inosine, appears to be one of the housekeeping genes.


2018 ◽  
Vol 6 (3) ◽  
pp. 65 ◽  
Author(s):  
Rebecca Weicht ◽  
Chad Schultz ◽  
Dirk Geerts ◽  
Katie Uhl ◽  
André Bachmann

Osteosarcoma (OS) is the most common bone tumor in children. Polyamines (PAs) are ubiquitous cations involved in many cell processes including tumor development, invasion and metastasis. In other pediatric cancer models, inhibition of the PA biosynthesis pathway with ornithine decarboxylase (ODC) inhibitor alpha-difluoromethylornithine (DFMO) results in decreased cell proliferation and differentiation. In OS, the PA pathway has not been evaluated. DFMO is an attractive, orally administered drug, is well tolerated, can be given for prolonged periods, and is already used in pediatric patients. Three OS cell lines were used to study the cellular effects of PA inhibition with DFMO: MG-63, U-2 OS and Saos-2. Effects on proliferation were analyzed by cell count, flow cytometry-based cell cycle analysis and RealTime-Glo™ MT Cell Viability assays. Intracellular PA levels were measured with high-performance liquid chromatography (HPLC). Western blot analysis was used to evaluate cell differentiation. DFMO exposure resulted in significantly decreased cell proliferation in all cell lines. After treatment, intracellular spermidine levels were drastically decreased. Cell cycle arrest at G2/M was observed in U-2 OS and Saos-2. Cell differentiation was most prominent in MG-63 and U-2 OS as determined by increases in the terminal differentiation markers osteopontin and collagen 1a1. Cell proliferation continued to be suppressed for several days after removal of DFMO. Based on our findings, DFMO is a promising new adjunct to current osteosarcoma therapy in patients at high risk of relapse, such as those with poor necrosis at resection or those with metastatic or recurrent osteosarcoma. It is a well-tolerated oral drug that is currently in phase II clinical trials in pediatric neuroblastoma patients as a maintenance therapy. The same type of regimen may also improve outcomes in osteosarcoma patients in whom there have been essentially no medical advances in the last 30 years.


Microbiology ◽  
2011 ◽  
Vol 157 (3) ◽  
pp. 839-847 ◽  
Author(s):  
Manon Rosselin ◽  
Nadia Abed ◽  
Isabelle Virlogeux-Payant ◽  
Elisabeth Bottreau ◽  
Pierre-Yves Sizaret ◽  
...  

Salmonella causes a wide range of diseases from acute gastroenteritis to systemic typhoid fever, depending on the host. To invade non-phagocytic cells, Salmonella has developed different mechanisms. The main invasion system requires a type III secretion system (T3SS) known as T3SS-1, which promotes a Trigger entry mechanism. However, other invasion factors have recently been described in Salmonella, including Rck and PagN, which were not expressed under our bacterial culture conditions. Based on these observations, we used adhesion and invasion assays to analyse the respective roles of Salmonella Enteritidis T3SS-1-dependent and -independent invasion processes at different times of infection. Diverse cell lines and cell types were tested, including endothelial, epithelial and fibroblast cells. We demonstrated that cell susceptibility to the T3SS-1-independent entry differs by a factor of nine between the most and the least permissive cell lines tested. In addition, using scanning electron and confocal microscopy, we showed that T3SS-1-independent entry into cells was characterized by a Trigger-like alteration, as for the T3SS-1-dependent entry, and also by Zipper-like cellular alteration. Our results demonstrate for what is believed to be the first time that Salmonella can induce Trigger-like entry independently of T3SS-1 and can induce Zipper-like entry independently of Rck. Overall, these data open new avenues for discovering new invasion mechanisms in Salmonella.


Author(s):  
E.V. Markova ◽  
V.T. Nochevny ◽  
B.L. Manin ◽  
I.N. Matveeva

The article presents the results of certification of two trofovariants of MDVK cell lines with the help of traditional method and flow cytometry. Research object was the test cultures MDBK-E and MDBK-B, which passed 30 and 43 passages, respectively, after cryopreservation. The traditional method of attestation of transplanted cell lines, widely used in practice, is rather laborious and requires significant expenditures of labor, money and time. The flow cytometry method is based on a wide range of cytochemical and fluorescent methods for the analysis of sizes, granularity, phases of the cell cycle, structural components (DNA, RNA, protein), cell apoptosis and a number of other indicators. It was experimentally established that the sublines of MDBK-E and MDBK-B cells differed in cultural, cytomorphological and karyological parameters, as well as in contamination by foreign agents and sensitivity to parainfluenza-3 viruses and infectious rhinotracheitis in cattle. Analysis of histograms of cell distribution depending on the DNA content showed that the studied lines MDBK-E and MDBK-B did not exceed the standard indicator in terms of apoptosis and were at the level of 3,9 and 6,8%, respectively. Cells of the MDBK-E line did not contain viral and mycoplasma contamination, were characterized by a pronounced growth potential, retained the original cell morphology and were the most promising substrate for the production of antigens of parainfluenza-3, infectious rhinotracheitis in cattle. Analysis of granularity distribution results testified to the violation of the division processes and the appearance in the population of the subline MDBK-B of abnormal cells, as well as inadequate conditions for maintaining the test culture. It has been established that the flow cytometry method is objective and quite promising in the selection of culture models that meet the requirements of domestic and international standards. The revealed correlation between the magnitude of apoptosis, cultural properties and parameters of the cell cycle makes it possible to assess the biological properties of the producer culture as one of the leading factors in the change in programmed cell death. Changes the index of programmed cell death underlies a number of important pathological conditions and degenerative processes.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2759-2759 ◽  
Author(s):  
Elisabeth Walsby ◽  
Val Walsh ◽  
Chris Pepper ◽  
Ken Mills ◽  
Alan K. Burnett

Abstract Aurora kinases (AK) participate in chromosome separation during mitosis and are essential for mitotic processes and completion of cytokinesis. AK-A is found at the centrosome and spindle apparatus during prophase to telophase, while AK-B is seen in the midzone during anaphase of the cell cycle. Inhibition of these kinases may be a viable therapeutic strategy. AZD1152 is a specific AK inhibitor, designed to target cell division in proliferating tumour cells, with potential for activity in a wide range of tumours. In order to evaluate the potential utility of the AK inhibitor AZD1152 in acute myeloid leukaemia (AML), the expression levels of AK-A, -B, and -C were evaluated in a panel of myeloid cell lines (HL-60, NB4, NB4R2, U937, KG1, and K562) and in cells from 10 normal bone marrows and 240 AML patients using the Affymetrix gene expression system (Affymetrix Inc.) validated by real-time quantitative polymerase chain reaction in 105 patients. AK-C was absent in all samples, while AK-A and -B were present in 5% and 34%, respectively, of the AML patients and both were present in normal bone marrow samples. Expression levels did not correlate with age, sex, French-American-British classification or cytogenetic risk group. AML cell lines were incubated with a variable concentration of AK inhibitor (0.01 μM to 10 μM) for up to 72 h and the effects on viability, cell growth, cell cycle, and DNA content measured after 24 and 48 h exposure. This resulted in the accumulation of cells with 4N DNA content, indicating an increased proportion of cells in G2, and development of cells with DNA content greater than G2/M phase cells, on occasions showing 8N ploidy. This effect was time and dose dependent. At 24 h AK inhibitor caused a significant increase (p≤0.05) in the number of cells with 4N DNA content, suggestive of G2, or with greater than 4N DNA content at concentrations as low as 0.01 μM. Growth of HL-60 and NB4 cells was inhibited, following 72 h treatment with AK inhibitor (0.01 μM), by 50% and 90% (p<0.05), respectively. Incubation of AML samples (n=28) with AK inhibitor also showed an effect on the cell cycle, with a significant increase in G2 population (p≤0.05), and occasionally an increase of DNA content (p≤0.05) after 24 and 48 h at a minimum concentration of 1.0 μM. Flow cytometric analysis showed histone H3 phosphorylation was decreased, from around 3–5% in untreated cells, only in a proportion (~35%) of primary samples. The growth inhibition effects seen are combined with increased DNA content, which is consistent with the endoreduplication effects associated with these agents. AK-B is expressed in around one-third of AML patients, and agents targeted against this kinase may have therapeutic potential in AML.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2889-2889
Author(s):  
Mohammad Reza Mirlashari ◽  
Ingrid Randen ◽  
Jens Kjeldsen-Kragh

Abstract Abstract 2889 GSK-3β is a multifunctional kinase that plays a role in several signaling pathways. Due to the contradictory roles of GSK-3β as a mediator of both cell survival and apoptosis, we have examined the role of GSK-3β for proliferation and apoptosis in leukemic cell lines KG1a, K562 and CMK. GSK-3β was selectively inhibited by the small-molecule SB-415286. Treatment of leukemia cells with SB-415286 (40 μM) for 72 hr approximately halved cell growth in all three cell lines. SB-415286 also showed a concentration-dependent stabilization of intracellular β-catenin: In KG1a cells the mean fluorescence intensity (MFI) [± 95% CI] was 3.1 [± 1.7] in untreated cells vs. 423 [± 24] in treated cell. The figures for the K562 and CMK cell lines were: 2.8 [± 1.6] vs. 353.2 [± 11.1], and 6.8 [± 4.0] vs. 320.2 [± 23.7], respectively. Cell cycle analysis was carried out to examine if the growth inhibition was caused by arrest in cell cycle and/or induction of apoptosis. We found that SB-415286 caused cell cycle arrest in the G2/M phase and accumulation of events corresponding to the subG1 phase, indicative of DNA fragmentation. The subG1 population was 45%, 34% and 17% in KG1a, K562 and CMK cells, respectively. To confirm that the increase of the subG1 fraction represented an apoptotic effect of the GSK-3β inhibition, we analyzed phosphatidylserine (PS) externalization and plasma membrane integrity. We found that SB-415286 caused a considerable increase of the proportion of early apoptotic cells, i.e. cells that were annexin V-positive and 7-AAD-negative: Mean [± 95% CI] in KG1a cells increased from 6.2% [± 1.2%] in untreated cells to 38% [± 3.1%] in treated cells. The figures for the K562 and CMK cell lines were: 3.0% [± 1.2%] vs. 29% [± 3.3%], and 3.9% [± 1.0%] vs. 16.0% [± 1.1%], respectively. Apoptosis signaling can be initiated by extracellular (death receptor) and/or intracellular (mitochondrial) signals. Flow cytometric analysis of cells stained by a dual-fluorescent mitochondrial dye JC-1 showed that 5–11% of untreated leukemic cells had low mitochondrial membrane potential. After 72 hr exposure to SB-415286 the mean [±95% CI] loss of the mitochondrial potential was found in 23% [± 2.0%], 33% [± 3.5%] and 42% [± 3.8%], in CMK, K562 and KG1a cells, respectively. Since drug treatment in some cell types may result in activation of both the intrinsic or extrinsic cell-death pathway in a parallel manner, we investigated if the external pathway is involved in SB-415286-induced apoptosis. For this purpose we assessed caspase-8 activation by flow cytometry. After 72 hr of treatment of CMK, K562 and KG1a cells the caspase-8 activities compared, to untreated cells, had increased 3.7-fold, 3.9-fold, and 4.4-fold, respectively. In some cell types, the extrinsic cell-death pathway leads to the cleavage of Bid (pro-apoptotic member of the Bcl-2 family) by caspase-8, generating a truncated version of the protein (tBid) which in turn activates the mitochondrial apoptotic pathway. Therefore, we determined whether depolarization of the mitochondrial membrane in the leukemic cell lines was an effect of activated caspase-8 or a direct effect of SB-415286. For this purpose Z-IETD-FMK (25 μM), a specific inhibitor of caspase-8, was applied to the cells for 2 hr. We found that inhibition of caspase-8 did not prevent SB-415286-induced apoptosis assessed by PS externalization. This indicates that activation of caspase-8 is part of the intrinsic apoptotic pathway and occurs downstream of mitochondria membrane potential depolarization mediated by other caspases. Taken together, our observations suggest that inhibition of GSK-3β induces apoptosis of leukemic cells by depolarizing the mitochondria membrane. Thus, inhibition of GSK-3β could be an attractive target for treatment of leukemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1998 ◽  
Vol 91 (2) ◽  
pp. 458-465 ◽  
Author(s):  
Bernard W. Parker ◽  
Gurmeet Kaur ◽  
Wilberto Nieves-Neira ◽  
Mohammed Taimi ◽  
Glenda Kohlhagen ◽  
...  

Abstract Flavopiridol (NSC 649890; Behringwerke L86-8275, Marburg, Germany), is a potent inhibitor of cyclin dependent kinases (CDKs) 1, 2, and 4. It has potent antiproliferative effects in vitro and is active in tumor models in vivo. While surveying the effect of flavopiridol on cell cycle progression in different cell types, we discovered that hematopoietic cell lines, including SUDHL4, SUDHL6 (B-cell lines), Jurkat, and MOLT4 (T-cell lines), and HL60 (myeloid), displayed notable sensitivity to flavopiridol-induced apoptosis. For example, after 100 nmol/L for 12 hours, SUDHL4 cells displayed a similar degree of DNA fragmentation to that shown by the apoptosis-resistant PC3 prostate carcinoma cells only after 3,000 nmol/L for 48 hours. After exposure to 1,000 nmol/L flavopiridol for 12 hours, typical apoptotic morphology was observed in SUDHL4 cells, but not in PC3 prostate carcinoma cells despite comparable potency (SUDHL4:120 nmol/L; PC3: 203 nmol/L) in causing growth inhibition by 50% (IC50). Flavopiridol did not induce topoisomerase I or II cleavable complex activity. A relation of p53, bcl2, or bax protein levels to apoptosis in SUDHL4 was not appreciated. While flavopiridol caused cell cycle arrest with decline in CDK1 activity in PC3 cells, apoptosis of SUDHL4 cells occurred without evidence of cell cycle arrest. These results suggest that antiproliferative activity of flavopiridol (manifest by cell cycle arrest) may be separated in different cell types from a capacity to induce apoptosis. Cells from hematopoietic neoplasms appear in this limited sample to be very susceptible to flavopiridol-induced apoptosis and therefore clinical trials in hematopoietic neoplasms should be of high priority.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
J. A. Badmus ◽  
O. E. Ekpo ◽  
A. A. Hussein ◽  
M. Meyer ◽  
D. C. Hiss

Natural plant products with potent growth inhibition and apoptosis induction properties are extensively being investigated for their cancer chemopreventive potential.Holarrhena floribunda(HF) is used in a wide range of traditional medicine practices. The present study investigated the antiproliferative and apoptosis induction potential of methanolic leaf extracts of HF against breast (MCF-7), colorectal (HT-29), and cervical (HeLa) cancer cells relative to normal KMST-6 fibroblasts. The MTT assay in conjunction with the trypan blue dye exclusion and clonogenic assays were used to determine the effects of the extracts on the cells. Caspase activities were assayed with Caspase-Glo 3/7 and Caspase-9 kits. Apoptosis induction was monitored by flow cytometry using the APOPercentage and Annexin V-FITC kits. Reactive oxygen species (ROS) was measured using the fluorogenic molecular probe 5-(and-6)-chloromethyl-2′,7′-dichlorofluorescein diacetate acetyl ester and cell cycle arrest was detected with propidium iodide. Dose-response analyses of the extract showed greater sensitivity in cancer cell lines than in fibroblast controls. Induction of apoptosis, ROS, and cell cycle arrest were time- and dose-dependent for the cancer cell lines studied. These findings provide a basis for further studies on the isolation, characterization, and mechanistic evaluation of the bioactive compounds responsible for the antiproliferative activity of the plant extract.


2014 ◽  
Author(s):  
Irene Gallego Romero ◽  
Bryan J Pavlovic ◽  
Irene Hernando-Herraez ◽  
Nicholas E Banovich ◽  
Courtney L Kagan ◽  
...  

Comparative genomics studies in primates are extremely restricted because we only have access to a few types of cell lines from non-human apes and to a limited collection of frozen tissues. In order to gain better insight into regulatory processes that underlie variation in complex phenotypes, we must have access to faithful model systems for a wide range of tissues and cell types. To facilitate this, we have generated a panel of 7 fully characterized chimpanzee (Pan troglodytes) induced pluripotent stem cell (iPSC) lines derived from fibroblasts of healthy donors. All lines appear to be free of integration from exogenous reprogramming vectors, can be maintained using standard iPSC culture techniques, and have proliferative and differentiation potential similar to human and mouse lines. To begin demonstrating the utility of comparative iPSC panels, we collected RNA sequencing data and methylation profiles from the chimpanzee iPSCs and their corresponding fibroblast precursors, as well as from 7 human iPSCs and their precursors, which were of multiple cell type and population origins. Overall, we observed much less regulatory variation within species in the iPSCs than in the somatic precursors, indicating that the reprogramming process has erased many of the differences observed between somatic cells of different origins. We identified 4,918 differentially expressed genes and 3,598 differentially methylated regions between iPSCs of the two species, many of which are novel inter-species differences that were not observed between the somatic cells of the two species. Our panel will help realise the potential of iPSCs in primate studies, and in combination with genomic technologies, transform studies of comparative evolution.


1996 ◽  
Vol 109 (2) ◽  
pp. 397-407
Author(s):  
L. Jahn ◽  
J. Sadoshima ◽  
A. Greene ◽  
C. Parker ◽  
K.G. Morgan ◽  
...  

To create muscle cell lines that conditionally differentiate in vitro we introduced a temperature-sensitive SV40 T antigen by retroviral infection into rat aortic smooth muscle cells (SMCs) and neonatal heart-derived cells. After G418 selection cell lines isolated were characterized at permissive (33 degrees C) and non-permissive (39 degrees C) temperatures. [3H]Thymidine uptake showed tht progression through the cell cycle is greatly reduced at 39 degrees C. Cytoskeletal proteins, such as actins and vimentin did not change significantly after temperature shift, while the number of desmin-positive SMCs significantly increased when cells were switched to 39 degrees C. Heart-derived muscle cells showed sarcomeric myosin heavy chain reactivity only when grown at 39 degrees C. After thrombin stimulation intracellular calcium in both cell types increased severalfold in 39 degrees C-cells but not in 33 degrees C-cells. Whole cell patch-clamp recordings of SMCs and heart-derived cells revealed a strong increase in nicardipine-sensitive Ca2+ current when cells were switched to 39 degrees C. Nicardipine-insensitive Ca2+ current also increased in both cell types at the non-permissive temperature. Na+ current in SMCs was large at 33 degrees C and small or not detectable at 39 degrees C and absent in heart-derived cells. Using a cDNA probe specific for the alpha 1 subunit of the dihydropyridine-sensitive Ca2+ channel we demonstrate a temperature-sensitive expression of the dihydropyridine receptor mRNA in smooth muscle-derived cells but not in heart-derived H10 cells. Our results suggest that upon downregulation of SV40 T antigen these cells become quiescent and exhibit a more differentiated phenotype. These cell lines may provide a useful tool to investigate ion channel- and receptor signal transduction, as well as cell cycle control in smooth and possibly cardiac muscle cell differentiation.


Sign in / Sign up

Export Citation Format

Share Document