scholarly journals Identification of Novel Roles of the Cytochrome P450 System in Early Embryogenesis: Effects on Vasculogenesis and Retinoic Acid Homeostasis

2003 ◽  
Vol 23 (17) ◽  
pp. 6103-6116 ◽  
Author(s):  
Diana M. E. Otto ◽  
Colin J. Henderson ◽  
Dianne Carrie ◽  
Megan Davey ◽  
Thomas E. Gundersen ◽  
...  

ABSTRACT The cytochrome P450-dependent monooxygenase system catalyzes the metabolism of xenobiotics and endogenous compounds, including hormones and retinoic acid. In order to establish the role of these enzymes in embryogenesis, we have inactivated the system through the deletion of the gene for the electron donor to all microsomal P450 proteins, cytochrome P450 reductase (Cpr). Mouse embryos homozygous for this deletion died in early to middle gestation (∼9.5 days postcoitum [dpc]) and exhibited a number of novel phenotypes, including the severe inhibition of vasculogenesis and hematopoiesis. In addition, defects in the brain, limbs, and cell types where CPR was shown to be expressed were observed. Some of the observed abnormalities have been associated with perturbations in retinoic acid homeostasis in later embryogenesis. Consistent with this possibility, embryos at 9.5 dpc had significantly elevated levels of retinoic acid and reduced levels of retinol. Further, some of the observed phenotypes could be either reversed or exacerbated by decreasing or increasing maternal retinoic acid exposure, respectively. Detailed analysis demonstrated a close relationship between the observed phenotype and the expression of genes controlling vasculogenesis. These data demonstrate that the cytochrome P450 system plays a key role in early embryonic development; this process appears to be, at least in part, controlled by regional concentrations of retinoic acid and has profound effects on blood vessel formation.

2021 ◽  
Vol 10 (11) ◽  
pp. 2358
Author(s):  
Maria Grazia Giovannini ◽  
Daniele Lana ◽  
Chiara Traini ◽  
Maria Giuliana Vannucchi

The microbiota–gut system can be thought of as a single unit that interacts with the brain via the “two-way” microbiota–gut–brain axis. Through this axis, a constant interplay mediated by the several products originating from the microbiota guarantees the physiological development and shaping of the gut and the brain. In the present review will be described the modalities through which the microbiota and gut control each other, and the main microbiota products conditioning both local and brain homeostasis. Much evidence has accumulated over the past decade in favor of a significant association between dysbiosis, neuroinflammation and neurodegeneration. Presently, the pathogenetic mechanisms triggered by molecules produced by the altered microbiota, also responsible for the onset and evolution of Alzheimer disease, will be described. Our attention will be focused on the role of astrocytes and microglia. Numerous studies have progressively demonstrated how these glial cells are important to ensure an adequate environment for neuronal activity in healthy conditions. Furthermore, it is becoming evident how both cell types can mediate the onset of neuroinflammation and lead to neurodegeneration when subjected to pathological stimuli. Based on this information, the role of the major microbiota products in shifting the activation profiles of astrocytes and microglia from a healthy to a diseased state will be discussed, focusing on Alzheimer disease pathogenesis.


2019 ◽  
Vol 125 (3) ◽  
pp. 356-366 ◽  
Author(s):  
Grazyna Kwapiszewska ◽  
Anne Katrine Z. Johansen ◽  
Jose Gomez-Arroyo ◽  
Norbert F. Voelkel

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mariagrazia Valentini ◽  
Alessia Piermattei ◽  
Gabriele Di Sante ◽  
Giuseppe Migliara ◽  
Giovanni Delogu ◽  
...  

A close relationship exists between gut microbiota and immune responses. An imbalance of this relationship can determine local and systemic immune diseases. In fact the immune system plays an essential role in maintaining the homeostasis with the microbiota that normally resides in the gut, while, at the same time, the gut microbiota influences the immune system, modulating number and function of effector and regulatory T cells. To achieve this aim, mutual regulation between immune system and microbiota is achieved through several mechanisms, including the engagement of toll-like receptors (TLRs), pathogen-specific receptors expressed on numerous cell types. TLRs are able to recognize ligands from commensal or pathogen microbiota to maintain the tolerance or trigger the immune response. In this review, we summarize the latest evidences about the role of TLRs expressed in adaptive T cells, to understand how the immune system promotes intestinal homeostasis, fights invasion by pathogens, and is modulated by the intestinal microbiota.


2006 ◽  
Vol 38 (3) ◽  
pp. 353-369 ◽  
Author(s):  
Gen Murakami ◽  
Nobuaki Tanabe ◽  
Hiro-taka Ishii ◽  
Mari Ogiue-Ikeda ◽  
Tomokazu Tsurugizawa ◽  
...  

2019 ◽  
Author(s):  
David Baidoe-Ansah ◽  
M Sadman Sakib ◽  
Shaobo Jia ◽  
Andre Fischer ◽  
Rahul Kaushik ◽  
...  

AbstractNeural extracellular matrix (ECM) is a complex molecular meshwork surrounding neurons and glial cells in the extracellular space. Structural and functional state of ECM in the brain is tightly regulated by various components of neural ECM such as hyaluronic acid, chondroitin sulfate proteoglycans, link proteins, tenascins, various matrix-modifying enzymes such as chondroitin sulfate synthases and carbohydrate sulfotransferase together with matrix-degrading enzymes. Age-dependent accumulation of ECM molecules is implicated in the age-associated decline in synaptic and cognitive functions. Understanding age-associated changes in the expression of genes involved in regulating various components of ECM can provide an insight into the role of ECM in the aging brain. Hence, in this study, we compared the expression levels of ECM regulating genes in three groups of mice: 2-3 months old mice (2-3M), 22- to 26-month-old mice (22-26M) and more than 30-month-old mice (>30M). Using qPCR, we discovered that in the hippocampus of >30M old mice, the majority of ECM related genes are downregulated, while genes related to neuroinflammation are highly upregulated. This pattern was accompanied by a decrease in cognitive performance of the >30M old mice and was most correlated among ECM-related genes with the downregulation of carbohydrate sulfotransferase 3 (CHST3) gene expression. Interestingly, in 24-26M mice, no general decrease in the expression of ECM related genes was observed, although we still found the upregulation in neuroinflammatory genes and downregulation of CHST3. Further analysis of epigenetic mechanisms revealed a decrease in H3K4me3, three methyl groups at the lysine 4 on the histone H3 proteins, associated with the promoter region of CHST3 gene in non-neuronal (NeuN-negative) but not in neuronal (NeuN-positive) cells. We conclude that in 22-26 M old brains there are minor changes in expression of the studied bona fide neural ECM genes but there is a prominent epigenetic dysregulation of the CHST3 gene responsible for 6-sulfation of chondroitin sulfates, which may lead to impaired brain plasticity and cognitive decline.


Author(s):  
R.I. Bersimbaev ◽  
◽  
O.V. Bulgakova ◽  
A.A. Aripova ◽  
A.Zh. Kausbekova ◽  
...  

Exosomes are extracellular vesicles secreted by almost all cell types that can function as a cell-to-cell carrier of information, providing pleiotropic functions in intercellular communication. Exosomes can transport various biomolecules, including proteins and nucleic acids, into recipient cells. The review analyzed the current data on the role of exosomes and the possibility of using exosomal microRNAs as a biomarker in the diagnosis of lung cancer. MicroRNAs can act as oncogenes or tumor suppressors, so they can regulate the expression of genes that play an important role in oncogenesis. At the moment, microRNAs of exosomes are one of the main candidates for the role of molecular markers in liquid biopsy for the diagnosis of oncological diseases. The review analyzes the diagnostic potential of the use of exosomes in carcinogenesis in general, with an emphasis on the use of exosomal microRNAs as biomarkers of lung cancer.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ulrich Schweizer ◽  
Simon Bohleber ◽  
Wenchao Zhao ◽  
Noelia Fradejas-Villar

Eighteen years ago, unexpected epileptic seizures in Selenop-knockout mice pointed to a potentially novel, possibly underestimated, and previously difficult to study role of selenium (Se) in the mammalian brain. This mouse model was the key to open the field of molecular mechanisms, i.e., to delineate the roles of selenium and individual selenoproteins in the brain, and answer specific questions like: how does Se enter the brain; which processes and which cell types are dependent on selenoproteins; and, what are the individual roles of selenoproteins in the brain? Many of these questions have been answered and much progress is being made to fill remaining gaps. Mouse and human genetics have together boosted the field tremendously, in addition to traditional biochemistry and cell biology. As always, new questions have become apparent or more pressing with solving older questions. We will briefly summarize what we know about selenoproteins in the human brain, glance over to the mouse as a useful model, and then discuss new questions and directions the field might take in the next 18 years.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4283-4283
Author(s):  
Chieh Lee Wong ◽  
Andrew Innes ◽  
Baoshan Ma ◽  
Gareth Gerrard ◽  
Zainul Abidin Norziha ◽  
...  

Abstract Introduction Despite significant progress in the understanding of the molecular pathogenesis of myeloproliferative neoplasms (MPN) and the identification of high molecular risk (HMR) genes (i.e. ASXL1, EZH2, IDH1 and IDH2 genes), the mechanisms by which different cell types predominate in the different disease subtypes and their implications for prognosis remain uncertain. Given the recently described association of senescence and fibrosis in a number of pathologies by Menoz-Espin et al, we hypothesized that genes implicated in oncogene-induced senescence (OIS) and senescence associated secretory phenotype (SASP) may contribute to the pathogenesis of these neoplastic bone marrow disorders that frequently show evidence of fibrosis. Specifically, we were interested in the gene expression levels in different disease subtypes, at a cell-type level, and whether these patterns of differential expression were distinct from the transforming JAK-STAT pathway and the HMR genes. Aim To elucidate the role of OIS and SASP genes in the pathogenesis of MPN subtypes by determining the differential expression of the genes in specific cell types in patients with MPN. Methods We performed gene expression profiling on normal controls (NC) and patients with MPN who were diagnosed with essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF) according to the 2008 WHO diagnostic criteria. Two cohorts of patients, the patient and validation cohorts, from 3 tertiary-level hospitals were recruited prospectively over 3 years. Peripheral blood samples were taken and sorted into polymorphonuclear cells (PMN), mononuclear cells (MNC) and T cells. RNA was extracted from each cell population. Gene expression profiling of the human transcriptome was performed using microarray and RNA sequencing on the patient and validation cohorts respectively. Gene expression analyses (GEA) were performed on 4 sets of genes derived from publicly available or custom derived gene set enrichment analysis: 92 OIS genes, 88 SASP genes (Gil et al), 4 HMR genes, and 126 genes associated with JAK-STAT pathway. Gene expression levels for each cell type in each disease were compared with NC to obtain the differential expression of the genes. RNA-seq analysis of samples from the validation cohort was used to validate the microarray results from the patient cohort. Results Twenty-eight patients (10 ET, 11 PV and 7 PMF) and 11 NC were recruited into the patient cohort. Twelve patients (4 ET, 4 PV and 4 PMF) and 4 NC were recruited into the validation cohort. After combination of the microarray and RNA-seq datasets, GEA of the OIS genes revealed the differential expressions of MCTP1 and SULT1B1 genes by PMN in PV but of none in PMF. In contrast, the BEX1 gene was identified as differentially expressed by MNC in PMF but none in PV. GEA of the SASP genes revealed differential expression of THBS1 gene by MNC in PMF but of none in PV. None of the SASP genes were differentially expressed by PMN in either PV or PMF. No differentially expressed genes were identified by PMN or MNC in ET, or by T cells in any of the diseases. Notably, GEA of the HMR genes and genes associated with the JAK-STAT pathways did not show any differential expression in any disease subtype by any cell type. Conclusions We have found strikingly distinct patterns of differential expression of senescence associated genes by PMN (in PV) and MNC (in PMF). These results provide a novel insight into the mechanisms underlying the different phenotype of the MPN subtypes and also to the cells responsible for mediating the differences. The lack of differential expression of OIS and SASP genes in ET may reflect the milder clinical phenotype of the disease. Although mutations in the HMR genes are associated with poor prognosis in PMF, the lack of differential expression in these genes and genes associated with the JAK-STAT pathway is in keeping with their mutated status and suggests that they give rise to the disease phenotypes via altering downstream expression of genes associated in other pathways such as the senescence pathways studied here. Further studies are warranted to investigate the role of these genes and the pathways involved in senescence at a cell-type specific level in order to gain further insight into how they can potentially give rise to the various disease phenotypes in MPN and unmask potential therapeutic targets. Disclosures Aitman: Illumina: Honoraria.


2018 ◽  
Author(s):  
Miho Sato-Hashimoto ◽  
Tomomi Nozu ◽  
Riho Toriba ◽  
Ayano Horikoshi ◽  
Miho Akaike ◽  
...  

AbstractA characteristic subset of microglia expressing CD11c appears in response to brain damage. However, the functional role of CD11c+ microglia, as well as the mechanism of its induction, are poorly understood. Here we report that the genetic ablation of signal regulatory protein α (SIRPα), a membrane protein, induced CD11c+ microglia in the brain white matter. Mice lacking CD47, a physiological ligand of SIRPα, and microglia-specific SIRPα knockout mice exhibited the same phenotype, suggesting the interaction between microglial SIRPα and CD47 on neighbouring cells suppressed the emergence of CD11c+ microglia. A lack of SIRPα did not cause detectable damage in the white matter, but resulted in the increased expression of genes characteristic of the repair phase after demyelination. In addition, cuprizone-induced demyelination was alleviated by the microglia-specific ablation of SIRPα. Thus, microglial SIRPα suppresses the induction of CD11c+ microglia that have the potential to accelerate the repair of damaged white matter.


Sign in / Sign up

Export Citation Format

Share Document