scholarly journals YB-1 Is Important for Late-Stage Embryonic Development, Optimal Cellular Stress Responses, and the Prevention of Premature Senescence

2005 ◽  
Vol 25 (11) ◽  
pp. 4625-4637 ◽  
Author(s):  
Zhi Hong Lu ◽  
Jason T. Books ◽  
Timothy J. Ley

ABSTRACT Proteins containing “cold shock” domains belong to the most evolutionarily conserved family of nucleic acid-binding proteins known among bacteria, plants, and animals. One of these proteins, YB-1, is widely expressed throughout development and has been implicated as a cell survival factor that regulates the transcription and/or translation of many cellular growth and death-related genes. For these reasons, YB-1 deficiency has been predicted to be incompatible with cell survival. However, the majority of YB-1 −/− embryos develop normally up to embryonic day 13.5 (E13.5). After E13.5, YB-1 −/− embryos exhibit severe growth retardation and progressive mortality, revealing a nonredundant role of YB-1 in late embryonic development. Fibroblasts derived from YB-1 −/− embryos displayed a normal rate of protein synthesis and minimal alterations in the transcriptome and proteome but demonstrated reduced abilities to respond to oxidative, genotoxic, and oncogene-induced stresses. YB-1 −/− cells under oxidative stress expressed high levels of the G1-specific CDK inhibitors p16Ink4a and p21Cip1 and senesced prematurely; this defect was corrected by knocking down CDK inhibitor levels with specific small interfering RNAs. These data suggest that YB-1 normally represses the transcription of CDK inhibitors, making it an important component of the cellular stress response signaling pathway.

Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 99
Author(s):  
Shweta Devi ◽  
Vijay Kumar ◽  
Sandeep Kumar Singh ◽  
Ashish Kant Dubey ◽  
Jong-Joo Kim

Neurodegenerative disorders, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), Amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD), are the most concerning disorders due to the lack of effective therapy and dramatic rise in affected cases. Although these disorders have diverse clinical manifestations, they all share a common cellular stress response. These cellular stress responses including neuroinflammation, oxidative stress, proteotoxicity, and endoplasmic reticulum (ER)-stress, which combats with stress conditions. Environmental stress/toxicity weakened the cellular stress response which results in cell damage. Small molecules, such as flavonoids, could reduce cellular stress and have gained much attention in recent years. Evidence has shown the potential use of flavonoids in several ways, such as antioxidants, anti-inflammatory, and anti-apoptotic, yet their mechanism is still elusive. This review provides an insight into the potential role of flavonoids against cellular stress response that prevent the pathogenesis of neurodegenerative disorders.


Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 552
Author(s):  
Wenbo Hu ◽  
Xiaogang Wang ◽  
Sanyuan Ma ◽  
Zhangchuan Peng ◽  
Yang Cao ◽  
...  

The silkworm Bombyx mori is an economically important insect, as it is the main producer of silk. Fibroin heavy chain (FibH) gene, encoding the core component of silk protein, is specifically and highly expressed in silk gland cells but not in the other cells. Although the silkworm FibH gene has been well studied in transcriptional regulation, its biological functions in the development of silk gland cells remain elusive. In this study, we constructed a CRISPRa system to activate the endogenous transcription of FibH in Bombyx mori embryonic (BmE) cells, and the mRNA expression of FibH was successfully activated. In addition, we found that FibH expression was increased to a maximum at 60 h after transient transfection of sgRNA/dCas9-VPR at a molar ratio of 9:1. The qRT-PCR analysis showed that the expression levels of cellular stress response-related genes were significantly up-regulated along with activated FibH gene. Moreover, the lyso-tracker red and monodansylcadaverine (MDC) staining assays revealed an apparent appearance of autophagy in FibH-activated BmE cells. Therefore, we conclude that the activation of FibH gene leads to up-regulation of cellular stress responses-related genes in BmE cells, which is essential for understanding silk gland development and the fibroin secretion process in B. mori.


2018 ◽  
Vol 5 (1) ◽  
pp. 11-29 ◽  
Author(s):  
Zsuzsa Bebok ◽  
Lianwu Fu

Abstract Cystic fibrosis (CF) is a life-shortening, genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR). The primary cause of CF is reduced CFTR-mediated chloride and bicarbonate transport, due to mutations in CFTR. However, inflammation and persistent infections influence clinical outcome. Cellular stress response pathways, such as the unfolded protein response (UPR) and the integrated stress response (ISR), referred to here as cellular stress response pathways (SRPs), contribute to the pathology of human disorders. Multiple studies have indicated activation of SRPs in CF tissues. We review our present understanding of how SRPs are activated in CF and their contribution to pathology. We conclude that reduced CFTR function in CF organs establishes a tissue environment in which internal or external insults activate SRPs. SRPs contribute to CF pathogenesis by reducing CFTR expression, enhancing inflammation with consequent tissue remodeling. Understanding the contribution of SRPs to CF pathogenesis is crucial even in the era of CFTR “modulators” that are designed to potentiate, correct or amplify CFTR function, since there is an urgent need for supportive treatments. Importantly, CF patients with established pathology could benefit from the targeted use of drugs that modulate SRPs to reduce the symptoms.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3587-3587
Author(s):  
Laurensia Yuniati ◽  
Laurens T van der Meer ◽  
Geert JV Poelmans ◽  
Sander AL Palit ◽  
Caroline Rodenbach ◽  
...  

Abstract During the course of tumorigenesis and subsequent chemotherapeutic intervention, cancer cells experience various kinds of physiological stress, including hypoxia and nutrient limitation. Escaping cell death is one of the routes utilized by these malignant cells to allow continued growth and to acquire therapy resistance. B-cell Translocation Gene 1 (BTG1) is recurrently affected by genomic deletion in pediatric acute lymphoblastic leukemia (ALL) patients. Here, we define BTG1 as a mediator of the cellular stress response. When challenged with cellular stressors, such as amino acid or glucose deprivation as well as drug induced Endoplasmic Reticulum (ER) stress, mouse embryonic fibroblasts (MEFs) lacking Btg1 expression show a 20-30% increased survival rate relative to wildtype cells (Figure 1). Similarly, bone marrow B-cell progenitors isolated from Btg1 knockout mice are more resistant to Asparaginase (ASNase), a drug widely used in the treatment of ALL. Activating Transcription Factor 4 (ATF4) is the master regulator of the stress response pathway that is activated upon nutrient limitation and ER stress. Importantly, loss of ATF4 function results in an enhanced survival almost identical to the effects we measured in Btg1 knockout cells. While ATF4 protein expression itself is not different between the genotypes, gene expression analysis revealed that the induction of a subset of ATF4 target genes (Ddit3, Atf3, Trib3, Gadd34, and Ndrg1) is significantly reduced in Btg1 knockout cells. As these genes are effectors of the apoptosis machinery, increased survival in the Btg1 knockout cells may reflect an attenuation of ATF4 function. We hypothesized that BTG1 complexes with ATF4 to modify its function by recruiting Protein Arginine Methyl Transferase 1 (PRMT1). This enzyme, known to cooperate with BTG1, marks its substrate proteins with a post translational modification but has not been previously implicated in the regulation of ATF4 activity. Co-immunoprecipitation experiments indeed revealed a direct interaction between BTG1 and ATF4. We used purified proteins in an in vitro methylation assay to show that ATF4 is directly methylated by PRMT1 on arginine residue 239. Expression of the mutant ATF4 R239K, which cannot be methylated, in an ATF4 knockout background resulted in reduced transcriptional activity in response to stress relative to wildtype ATF4. In addition, we aimed to mimic the effect of BTG1 loss on the regulation ATF4 function by the addition of PRMT1 inhibitor AMI-1. Treatment of cells with this selective inhibitor faithfully recapitulates BTG1 loss by attenuating the induction of ATF4 target genes upon stress. Our findings establish the interplay of BTG1-ATF4-PRMT1 as a part of the cellular stress response. Taken together, our data indicate that BTG1 is necessary to maintain normal ATF4 function under cellular stress conditions. Loss of BTG1 expression, as it occurs during lymphoid leukemia development, may therefore provide a selective advantage for leukemic cells to survive and to resist treatment at a later stage of disease. Figure 1 Btg1 is required for survival under cellular stress. Wildtype (WT) and Btg1-/- MEFs were challenged with different treatments that cause nutrient limitation and ER stress. A MTT based assay was used to study the metabolic activity of the cells as a measure of viability. The relative cell survival as compared to untreated cells (set as 100%) is shown. Bars represent average data from four independent experiments ± SEM. 2-tailed t-test was used to test for significance: * p<0.05, ** p<0.01. Figure 1. Btg1 is required for survival under cellular stress. Wildtype (WT) and Btg1-/- MEFs were challenged with different treatments that cause nutrient limitation and ER stress. A MTT based assay was used to study the metabolic activity of the cells as a measure of viability. The relative cell survival as compared to untreated cells (set as 100%) is shown. Bars represent average data from four independent experiments ± SEM. 2-tailed t-test was used to test for significance: * p<0.05, ** p<0.01. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 667-667
Author(s):  
Bradford Hull ◽  
George Sutphin

Abstract Cellular stress is a fundamental component of age-associated disease. Cells experience many forms of stress (oxidative, heavy metal, etc.), and as we age the burden of stress and resulting damage increases while our cells’ ability to deal with the consequences becomes diminished due to dysregulation of cellular stress response pathways. By understanding how cells respond to stress we aim to slow age-associated deterioration and develop treatment targets for age-associated disease. The majority of past work has focused on understanding responses to individual stressors. In contrast, how pathology and stress responses differ in the presence of multiple stressors is relatively unknown; we investigate that here. We cultured worms on agar plates with different combinations of arsenic, copper, and DTT (which create oxidative/proteotoxic, heavy metal, and endoplasmic reticulum (ER) stress, respectively) at doses that result in 20% lifespan reduction individually and measured the effect on lifespan. We found that arsenic/copper and arsenic/DTT combinations created additive lifespan reductions while the copper/DTT combination created an antagonistic lifespan reduction when compared to controls (p&lt;0.05). This antagonistic toxicity suggests an interaction either between the mechanisms of toxicity or the cellular response to copper and DTT. We are now evaluating the impact of copper and DTT individually and in combination on unfolded protein and heavy metal response pathways to understand the underlying mechanism of the interaction. Additionally, we are continuing to screen stressors to identify combinations that cause non-additive (synergistic or antagonistic) toxicity to build a comprehensive model of the genetic stress response network in C. elegans.


2021 ◽  
Author(s):  
Pauline Brendler Goettems Fiorin ◽  
Mirna Stela Ludwig ◽  
Matias Nunes Frizzo ◽  
Thiago Gomes Heck

Particulate matter (PM) is a mixture of solid particles and liquid droplets found in the air, and it is one of the most harmful air pollutants. When inhaled, it affects the pulmonary system, cardiovascular systems, and other tissues. The size, composition, and deposition of PM, mainly related to fine and ultrafine particulate matter, are factors that determine the harmful effects of exposure to particles. Among the main effects is the inducer of ROS production, and consequently oxidative tissue damage in target organs and other responses, mediated by inflammatory cytokines and cellular stress response. The main pathway through which particles are potent mediators of oxidative stress is the damage caused to DNA and lipid molecules, whereas the pro-inflammatory response involves an immune response against PM, which in turn, it is related to cell stress responses observed by heat shock proteins (HSPs) expression and release. Thus, the ability of an organism to respond to PM inhalation requires anti-oxidative, anti-inflammatory, and cellular stress defenses that can be impaired in susceptible subjects as people with chronic diseases as diabetes and obesity. In this chapter, we discuss the mechanistic aspects of PM effects on health and present some animal research models in particle inhalation studies.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1105 ◽  
Author(s):  
Kim ◽  
Lee ◽  
Seo ◽  
Kim ◽  
Kim ◽  
...  

Radiotherapy is one of the major cancer treatment strategies. Exposure to penetrating radiation causes cellular stress, directly or indirectly, due to the generation of reactive oxygen species, DNA damage, and subcellular organelle damage and autophagy. These radiation-induced damage responses cooperatively contribute to cancer cell death, but paradoxically, radiotherapy also causes the activation of damage-repair and survival signaling to alleviate radiation-induced cytotoxic effects in a small percentage of cancer cells, and these activations are responsible for tumor radio-resistance. The present study describes the molecular mechanisms responsible for radiation-induced cellular stress response and radioresistance, and the therapeutic approaches used to overcome radioresistance.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1110 ◽  
Author(s):  
Candida Fasano ◽  
Vittoria Disciglio ◽  
Stefania Bertora ◽  
Martina Lepore Signorile ◽  
Cristiano Simone

Cellular stress response is a universal mechanism that ensures the survival or negative selection of cells in challenging conditions. The transcription factor Forkhead box protein O3 (FOXO3a) is a core regulator of cellular homeostasis, stress response, and longevity since it can modulate a variety of stress responses upon nutrient shortage, oxidative stress, hypoxia, heat shock, and DNA damage. FOXO3a activity is regulated by post-translational modifications that drive its shuttling between different cellular compartments, thereby determining its inactivation (cytoplasm) or activation (nucleus and mitochondria). Depending on the stress stimulus and subcellular context, activated FOXO3a can induce specific sets of nuclear genes, including cell cycle inhibitors, pro-apoptotic genes, reactive oxygen species (ROS) scavengers, autophagy effectors, gluconeogenic enzymes, and others. On the other hand, upon glucose restriction, 5′-AMP-activated protein kinase (AMPK) and mitogen activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) -dependent FOXO3a mitochondrial translocation allows the transcription of oxidative phosphorylation (OXPHOS) genes, restoring cellular ATP levels, while in cancer cells, mitochondrial FOXO3a mediates survival upon genotoxic stress induced by chemotherapy. Interestingly, these target genes and their related pathways are diverse and sometimes antagonistic, suggesting that FOXO3a is an adaptable player in the dynamic homeostasis of normal and stressed cells. In this review, we describe the multiple roles of FOXO3a in cellular stress response, with a focus on both its nuclear and mitochondrial functions.


2018 ◽  
Author(s):  
Eric M. Erkenbrack ◽  
Jamie D. Maziarz ◽  
Oliver W. Griffith ◽  
Cong Liang ◽  
Arun R. Chavan ◽  
...  

AbstractAmong animal species, cell types vary greatly in terms of number and kind. The broad range of number of cell types among species suggests that cell type origination is a significant source of evolutionary novelty. The molecular mechanisms giving rise to novel cell types, however, are poorly understood. Here we show that a novel cell type of eutherian mammals, the decidual stromal cell (DSC), evolved by rewiring an ancestral cellular stress response. We isolated the precursor cell type of DSCs, endometrial stromal fibroblasts (ESFs), from the opossum Monodelphis domestica. We show that, in opossum ESF, the majority of decidual core regulatory genes respond to decidualizing signals, but do not regulate decidual effector genes. Rather, in opossum ESF, decidual transcription factors function in apoptotic and oxidative stress response. We propose that the rewiring of cellular stress responses could be a general mechanism for the evolution of novel cell types.


Sign in / Sign up

Export Citation Format

Share Document