scholarly journals Tissue Transglutaminase Serves as an Inhibitor of Apoptosis by Cross-Linking Caspase 3 in Thapsigargin-Treated Cells

2006 ◽  
Vol 26 (2) ◽  
pp. 569-579 ◽  
Author(s):  
Hirohito Yamaguchi ◽  
Hong-Gang Wang

ABSTRACT Thapsigargin (THG) is an inhibitor of the endoplasmic reticulum Ca2+-ATPase that induces caspase 3 activation and apoptosis in HCT116 cells through a Bax-dependent pathway. In Bax-deficient HCT116 cells, however, THG specifically generates two additional species of caspase 3, termed p40 and p64, with molecular masses of approximately 40 and 64 kDa, respectively, through unknown mechanisms. Here, we report that the Ca2+-dependent protein cross-linking enzyme tissue transglutaminase (tTGase) is involved in THG-induced p40 and p64 formation by catalyzing caspase 3 cross-linking reactions, thereby inactivating caspase 3 and apoptosis in Bax-deficient cells. Overexpression of tTGase increases p40 and p64 in THG-treated cells, and purified tTGase catalyzes procaspase 3 cross-linking in vitro. Inhibition of tTGase activity by either the tTGase inhibitor monodansylcadaverine or short-hairpin RNA reduces the cross-linked species p40 and p64 and restores caspase 3 activation in response to THG treatment. Moreover, prolonged exposure to THG results in a decrease in protein levels of XIAP and cIAP-1, which is subsequently followed by an increase in tTGase protein expression and activity. Expression of cytosolic Smac sensitizes Bax-deficient cells to THG-induced apoptosis; however, this effect is diminished by coexpression of tTGase. Taken together, these results suggest a novel role for tTGase as a new type of caspase 3 inhibitor in THG-mediated apoptosis.

2015 ◽  
Vol 37 (2) ◽  
pp. 116-119 ◽  
Author(s):  
T O Kochubei ◽  
O Y Maksymchuk ◽  
O O Piven ◽  
L L Lukash

Aim: To study the effects of total phytohemagglutinin (PHA) and its isolectins on cell death and apoptosis in human HEp-2 carcinoma cells and to analyze the possible molecular mechanisms of lectin induced apoptosis. Materials and Methods: The commercial preparation of the kidney beans (Phaseolus vulgaris) lectins and HEp-2 cells were used. Apoptosis index was determined using acridine orange and ethidium bromide staining. The expression levels of apoptosis mediator cleaved caspase-3 and proapoptotic Bax protein were studied by Western blot analysis. The gene expression levels were analyzed by qPCR. Results: PHA and its isolectins induced apoptosis in HEp-2 cells accompanied by the increased expression of caspase-3 cleaved form, with PHA-E being the most effective. The treatment of HEp-2 cells with PHA or its isolectins resulted in a marked increase of Bax on both mRNA and protein levels. Conclusions: PHA and its isolectins were shown to induce the apoptosis in human HEp-2 carcinoma cells via increasing proapoptotic protein Bax and activating caspases-3.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2112-2112 ◽  
Author(s):  
Dirk Winkler ◽  
Christof Schneider ◽  
Daniela Nitsch ◽  
Annett Habermann ◽  
Hartmut Doehner ◽  
...  

Abstract Chemotherapeutic agents such as fludarabine, etoposide and the monoclonal anti-CD52 antibody alemtuzumab induce cell death and clinical responses in CLL. However, the mechanisms by which these processes occur are not well understood. In an effort to gain better insight into these mechanisms CLL cells from 21 patients were collected and individually treated with fludarabine 500μM (n=19) and etoposide 60 μM (n=19) for 24 and 48 hours respectively, and 24 hours with alemtuzumab 10 μg/ml ± cross-linking F(ab’)2 fragments. Each sample treated with alemtuzumab was also cultured with and without serum as a source of complement. Enrichment for B-cells was also done in 4 cases using negative selection with anti-CD2 and anti-CD14 magnetic beads. Of 18 cases investigated 10 were unmutated VH and 6 of 19 had del11q and/or del17p. A FACS analysis with double staining for Annexin V/7AAD was used to measure rates of cell death and caspase-3 activation. Results: treatment with fludarabine and etoposide induced apoptosis in all cases. However, rates of apoptosis decreased in cells from patients with genetically high-risk CLL, and these cells showed higher caspase-3 activation in response to fludarabine. Response to alemtuzumab was significantly dependent on presence of serum in the culture: 8% Annexin-V/7AAD-positive cells in serum-free cultures vs 53% in cultures with serum. However, addition of F(ab’)2 fragments increased the percentage of Annexin-V/7AAD-positive cells even in serum-free cultures: 61% with serum vs 25% without serum. Response to alemtuzumab was found to be independent of the genetic subgroup of the case. Notably, treatment with alemtuzumab in serum cultures did not produce cells that stained Annexin-positive/7AAD-negative, a typical feature of early apoptosis, whereas treatment with fludarabine, etoposide and alemtuzumab in serum-free medium resulted in a significant number of Annexin-positive/7AAD-negative cells. This was also observed in CD19+ purified cultures. In the presence of serum alemtuzumab did not induce caspase-3 activation, neither did the addition of F(ab’)2 fragments. However, in 5 of 20 serum-free cell cultures, all of had unmutated VH, active caspase-3 was clearly detectable after alemtuzumab treatment, and caspase-3 activity was further up-regulated when F(ab’)2 fragments were also added. Summary: in CLL cells mechanism and rate of cell death dramatically differed depending on in-vitro treatment with fludarabine, etoposide and alemtuzumab, and differed between genetic subgroups. CLL cells from high-risk patients were more capable of caspase-3 activation when treated with fludarabine or alemtuzumab. Alemtuzumab killed CLL cells effectively and independently of serum as a source of complement, but the mechanism of response was different when serum was added. In serum-free CLL cultures, alemtuzumab induced apoptosis with activation of caspase-3, and addition of cross-linking F(ab’)2 fragments increased the rate apoptosis, whereas in the presence of serum treatment with alemtuzumab induced no typical features of apoptosis, even in B-cell enriched cultures. These findings favor CDC rather than apoptosis or ADCC as the major cell kill mechanism activated by in vivo alemtuzumab. mean % of cells AnnexinV+/7AAD+ caspase-3 activation etoposide (48 hrs) fludarabine (48 hrs) fludarabine (48 hrs) IgVH unmutated 33% 24% 32% IgVH mutated 74% 38% 20% del 11q/del 17p 39% 25% 37% del 13q/normal karyotype 61% 32% 21%


Blood ◽  
2008 ◽  
Vol 111 (5) ◽  
pp. 2797-2805 ◽  
Author(s):  
Feng-Ting Liu ◽  
Samir G. Agrawal ◽  
John G. Gribben ◽  
Hongtao Ye ◽  
Ming-Qing Du ◽  
...  

Proapoptotic Bcl-2 family member Bax is a crucial protein in the induction of apoptosis, and its activation is required for this process. Here we report that Bax is a short-lived protein in malignant B cells and Bax protein levels decreased rapidly when protein synthesis was blocked. Malignant B cells were relatively resistant to tumor necrosis factor–related apoptosis inducing ligand (TRAIL)–induced apoptosis, and this correlated with low basal Bax protein levels. Furthermore, during treatment with TRAIL, the resistant cell lines showed prominent Bax degradation activity. This degradation activity was localized to mitochondrial Bax and could be prevented by truncated Bid, a BH3-only protein; in contrast, cytosolic Bax was relatively stable. The proteasome inhibitor bortezomib is a potent drug in inducing apoptosis in vitro in malignant B-cell lines and primary chronic lymphocytic leukemic (CLL) cells. In CLL cells, bortezomib induced Bax accumulation, translocation to mitochondria, conformational change, and oligomerization. Accumulation and stabilization of Bax protein by bortezomib-sensitized malignant B cells to TRAIL-induced apoptosis. This study reveals that Bax instability confers resistance to TRAIL, which can be reversed by Bax stabilization with a proteasome inhibitor.


2000 ◽  
Vol 11 (3) ◽  
pp. 929-939 ◽  
Author(s):  
Seunghyi Kook ◽  
Sang Ryeol Shim ◽  
Soo Jeon Choi ◽  
Joohong Ahnn ◽  
Jae Il Kim ◽  
...  

Apoptosis causes characteristic morphological changes in cells, including membrane blebbing, cell detachment from the extracellular matrix, and loss of cell–cell contacts. We investigated the changes in focal adhesion proteins during etoposide-induced apoptosis in Rat-1 cells and found that during apoptosis, p130cas (Crk-associated substrate [Cas]) is cleaved by caspase-3. Sequence analysis showed that Cas contains 10 DXXD consensus sites preferred by caspase-3. We identified two of these sites (DVPD416G and DSPD748G) in vitro, and point mutations substituting the Asp of DVPD416G and DSPD748G with Glu blocked caspase-3-mediated cleavage. Cleavage at DVPD416G generated a 74-kDa fragment, which was in turn cleaved at DSPD748G, yielding 47- and 31-kDa fragments. Immunofluorescence microscopy revealed well-developed focal adhesion sites in control cells that dramatically declined in number in etoposide-treated cells. Cas cleavage correlated temporally with the onset of apoptosis and coincided with the loss of p125FAK (focal adhesion kinase [FAK]) from focal adhesion sites and the attenuation of Cas–paxillin interactions. Considering that Cas associates with FAK, paxillin, and other molecules involved in the integrin signaling pathway, these results suggest that caspase-mediated cleavage of Cas contributes to the disassembly of focal adhesion complexes and interrupts survival signals from the extracellular matrix.


2018 ◽  
Vol 50 (5) ◽  
pp. 1804-1814 ◽  
Author(s):  
Ni Wang ◽  
Xiaohua Liang ◽  
Weijian Yu ◽  
Shihang Zhou ◽  
Meiyun  Fang

Background/Aims: MiR-19b has been reported to be involved in several malignancies, but its role in multiple myeloma (MM) is still unknown. The objective of this study was to explore the biological mechanism of miR-19b in the progression of MM. Methods: First, we performed real-time polymerase chain reaction (PCR) and Western blot to study the expression of miR-19b, tuberous sclerosis 1 (TSC1), and caspase-3 in different groups. MTT assay was performed to explore the effect of miR-19b on survival and apoptosis of cancer stem cells (CSCs). Computation analysis and luciferase assay were utilized to confirm the interaction between miR-19b and TSC1. Results: A total of 38 participants comprising 20 subjects with MM and 18 healthy subjects as normal controls were enrolled in our study. Real-time PCR showed dramatic upregulation of miR-19b, but TSC1 was evidently suppressed in the MM group. MiR-19b overexpression substantially promoted clonogenicity and cell viability, and further inhibited apoptosis of CSCs in vitro. Furthermore, miR-19b overexpression downregulated the expression of caspase-3, which induced apoptosis. Using in silico analysis, we identified that TSC1 might be a direct downstream target of miR-19b, and this was further confirmed by luciferase assay showing that miR-19b apparently reduced the luciferase activity of wild-type TSC1 3´-UTR, but not that of mutant TSC1 3´-UTR. There was also evident decrease in TSC1 mRNA and protein in CSCs following introduction of miR-19b. Interestingly, reintroduction of TSC1 abolished the miR-19b-induced proliferation promotion and apoptosis inhibition in CSCs. Conclusion: These findings collectively suggest that miR-19b promotes cell survival and suppresses apoptosis of MM CSCs via targeting TSC1 directly, indicating that miR-19b may serve as a potential and novel therapeutic target of MM based on miRNA expression.


2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Patricia Sanmartín-Salinas ◽  
Luis G. Guijarro

We reported that insulin receptor substrate 4 (IRS-4) levels increased in tissue from colorectal cancer (CRC) patients and promoted retinoblastoma-cyclin-dependent kinase activation. The aim of the present study was to evaluate the effect of IRS-4 on IGF-1 receptor pathway and its impact on procaspase 3 and PARP expression in RKO and HepG2 cancer cell lines. The results obtained in vitro were compared with those obtained from biopsies of patients with CRC (n = 18), tubulovillous adenomas (TA) (n = 2) and in matched adjacent normal colorectal (MANC) tissue (n = 20). IRS-4 overexpression in cultured cells induced the overactivation of IGF-1/BRK/AKT/GSK-3/β-catenin/cyclin D1 pathways, which led to increased expression of procaspase 3 and PARP protein levels. Studies carried out on CRC and TA tissues revealed the overactivation of the IGF-1 receptor signalling pathway, as well as the overexpression of procaspase 3 and PARP in tumoural tissue with respect to MANC tissue. The upregulation of IRS-4 in tumoural samples correlated significantly with the increase in pIGF-1 receptor (Tyr 1165/1166) (r = 0.84; p < 0.0001), procaspase 3 (r = 0. 77; p < 0. 0005) and PARP (r = 0. 89; p < 0. 0005). Similarly, we observed an increase in the proteolysis of procaspase 3 in tumoural tissue with respect to MANC tissue, which correlated significantly with the degradation of PARP (r = 0.86; p < 0.0001), p53 (r = 0.84; p < 0.0001), and GSK-3 (r = 0.78; p < 0.0001). The stratification of patient samples using the TNM system revealed that procaspase 3 and caspase 3 increased gradually with T values, which suggests their involvement in the size and local invasion of primary tumours. Taken together, our findings suggest that IRS-4 overexpression promotes the activation of the IGF-1 receptor pathway, which leads to the increase in procaspase 3 levels in CRC.


2009 ◽  
Vol 111 (4) ◽  
pp. 741-752 ◽  
Author(s):  
Yu Zhen ◽  
Yuanlin Dong ◽  
Xu Wu ◽  
Zhipeng Xu ◽  
Yan Lu ◽  
...  

Background Some anesthetics have been suggested to induce neurotoxicity, including promotion of Alzheimer's disease neuropathogenesis. Nitrous oxide and isoflurane are common anesthetics. The authors set out to assess the effects of nitrous oxide and/or isoflurane on apoptosis and beta-amyloid (Abeta) levels in H4 human neuroglioma cells and primary neurons from naïve mice. Methods The cells or neurons were exposed to 70% nitrous oxide and/or 1% isoflurane for 6 h. The cells or neurons and conditioned media were harvested at the end of the treatment. Caspase-3 activation, apoptosis, processing of amyloid precursor protein, and Abeta levels were determined. Results Treatment with a combination of 70% nitrous oxide and 1% isoflurane for 6 h induced caspase-3 activation and apoptosis in H4 naïve cells and primary neurons from naïve mice. The 70% nitrous oxide plus 1% isoflurane, but neither alone, for 6 h induced caspase-3 activation and apoptosis, and increased levels of beta-site amyloid precursor protein-cleaving enzyme and Abeta in H4-amyloid precursor protein cells. In addition, the nitrous oxide plus isoflurane-induced Abeta generation was reduced by a broad caspase inhibitor, Z-VAD. Finally, the nitrous oxide plus isoflurane-induced caspase-3 activation was attenuated by gamma-secretase inhibitor L-685,458, but potentiated by exogenously added Abeta. Conclusion These results suggest that the common anesthetics nitrous oxide plus isoflurane may promote neurotoxicity by inducing apoptosis and increasing Abeta levels. The generated Abeta may further potentiate apoptosis to form another round of apoptosis and Abeta generation. More studies, especially the in vivo confirmation of these in vitro findings, are needed.


2000 ◽  
Vol 192 (7) ◽  
pp. 1035-1046 ◽  
Author(s):  
Veronika Jesenberger ◽  
Katarzyna J. Procyk ◽  
Junying Yuan ◽  
Siegfried Reipert ◽  
Manuela Baccarini

The enterobacterial pathogen Salmonella induces phagocyte apoptosis in vitro and in vivo. These bacteria use a specialized type III secretion system to export a virulence factor, SipB, which directly activates the host's apoptotic machinery by targeting caspase-1. Caspase-1 is not involved in most apoptotic processes but plays a major role in cytokine maturation. We show that caspase-1–deficient macrophages undergo apoptosis within 4–6 h of infection with invasive bacteria. This process requires SipB, implying that this protein can initiate the apoptotic machinery by regulating components distinct from caspase-1. Invasive Salmonella typhimurium targets caspase-2 simultaneously with, but independently of, caspase-1. Besides caspase-2, the caspase-1–independent pathway involves the activation of caspase-3, -6, and -8 and the release of cytochrome c from mitochondria, none of which occurs during caspase-1–dependent apoptosis. By using caspase-2 knockout macrophages and chemical inhibition, we establish a role for caspase-2 in both caspase-1–dependent and –independent apoptosis. Particularly, activation of caspase-1 during fast Salmonella-induced apoptosis partially relies on caspase-2. The ability of Salmonella to induce caspase-1–independent macrophage apoptosis may play a role in situations in which activation of this protease is either prevented or uncoupled from the induction of apoptosis.


2005 ◽  
Vol 102 (6) ◽  
pp. 1147-1157 ◽  
Author(s):  
Torsten Loop ◽  
David Dovi-Akue ◽  
Michael Frick ◽  
Martin Roesslein ◽  
Lotti Egger ◽  
...  

Background Volatile anesthetics modulate lymphocyte function during surgery, and this compromises postoperative immune competence. The current work was undertaken to examine whether volatile anesthetics induce apoptosis in human T lymphocytes and what apoptotic signaling pathway might be used. Methods Effects of sevoflurane, isoflurane, and desflurane were studied in primary human CD3 T lymphocytes and Jurkat T cells in vitro. Apoptosis and mitochondrial membrane potential were assessed using flow cytometry after green fluorescent protein-annexin V and DiOC6-fluorochrome staining. Activity and proteolytic processing of caspase 3 was measured by cleaving of the fluorogenic effector caspase substrate Ac-DEVD-AMC and by anti-caspase-3 Western blotting. Release of mitochondrial cytochrome c was studied after cell fractionation using anti-cytochrome c Western blotting and enzyme-linked immunosorbent assays. Results Sevoflurane and isoflurane induced apoptosis in human T lymphocytes in a dose-dependent manner. By contrast, desflurane did not exert any proapoptotic effects. The apoptotic signaling pathway used by sevoflurane involved disruption of the mitochondrial membrane potential and release of cytochrome c from mitochondria to the cytosol. In addition, the authors observed a proteolytic cleavage of the inactive p32 procaspase 3 to the active p17 fragment, increased caspase-3-like activity, and cleavage of the caspase-3 substrate poly-ADP-ribose-polymerase. Sevoflurane-induced apoptosis was blocked by the general caspase inhibitor Z-VAD.fmk. Death signaling was not mediated via the Fas/CD95 receptor pathway because neither anti-Fas/CD95 receptor antagonism nor FADD deficiency or caspase-8 deficiency were able to attenuate sevoflurane-mediated apoptosis. Conclusion Sevoflurane and isoflurane induce apoptosis in T lymphocytes via increased mitochondrial membrane permeability and caspase-3 activation, but independently of death receptor signaling.


Sign in / Sign up

Export Citation Format

Share Document