scholarly journals Cross-Species Virus Transmission and the Emergence of New Epidemic Diseases

2008 ◽  
Vol 72 (3) ◽  
pp. 457-470 ◽  
Author(s):  
Colin R. Parrish ◽  
Edward C. Holmes ◽  
David M. Morens ◽  
Eun-Chung Park ◽  
Donald S. Burke ◽  
...  

SUMMARY Host range is a viral property reflecting natural hosts that are infected either as part of a principal transmission cycle or, less commonly, as “spillover” infections into alternative hosts. Rarely, viruses gain the ability to spread efficiently within a new host that was not previously exposed or susceptible. These transfers involve either increased exposure or the acquisition of variations that allow them to overcome barriers to infection of the new hosts. In these cases, devastating outbreaks can result. Steps involved in transfers of viruses to new hosts include contact between the virus and the host, infection of an initial individual leading to amplification and an outbreak, and the generation within the original or new host of viral variants that have the ability to spread efficiently between individuals in populations of the new host. Here we review what is known about host switching leading to viral emergence from known examples, considering the evolutionary mechanisms, virus-host interactions, host range barriers to infection, and processes that allow efficient host-to-host transmission in the new host population.

Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 851
Author(s):  
Chris Hoffmann ◽  
Stephanie Wurr ◽  
Elisa Pallasch ◽  
Sabrina Bockholt ◽  
Toni Rieger ◽  
...  

Natural hosts of most arenaviruses are rodents. The human-pathogenic Lassa virus and several non-pathogenic arenaviruses such as Morogoro virus (MORV) share the same host species, namely Mastomys natalensis (M. natalensis). In this study, we investigated the history of infection and virus transmission within the natural host population. To this end, we infected M. natalensis at different ages with MORV and measured the health status of the animals, virus load in blood and organs, the development of virus-specific antibodies, and the ability of the infected individuals to transmit the virus. To explore the impact of the lack of evolutionary virus–host adaptation, experiments were also conducted with Mobala virus (MOBV), which does not share M. natalensis as a natural host. Animals infected with MORV up to two weeks after birth developed persistent infection, seroconverted and were able to transmit the virus horizontally. Animals older than two weeks at the time of infection rapidly cleared the virus. In contrast, MOBV-infected neonates neither developed persistent infection nor were able to transmit the virus. In conclusion, we demonstrate that MORV is able to develop persistent infection in its natural host, but only after inoculation shortly after birth. A related arenavirus that is not evolutionarily adapted to M. natalensis is not able to establish persistent infection. Persistently infected animals appear to be important to maintain virus transmission within the host population.


2019 ◽  
Author(s):  
Nargis Alom Choudhury ◽  
Deepjyoti Paul ◽  
Bhaskar jyoti Das ◽  
Debadatta Dhar (Chanda) ◽  
Amitabha Bhattacharjee

Abstract Different variants of blaNDM has been reported across Indian subcontinent within diverse host range of gram negative bacilli. Most of their transferability depends on types of plasmid that encodes resistance determinant. IncX type plasmid is more recently known for carrying carbapenem resistance and NDM-4 variant is considered to have better hydrolytic property. This study aims to investigate the maintenance and stability of blaNDM-4 within BHR and transcriptional response. E.coli of clinical origin that harbor blaNDM-4 within IncX3 plasmid were used. Six different hosts were selected for gene transfer experiment, two strains of E.coli, K.pneumoniae, P.mirabilis, A.baumannii and P.aeruginosa. All the transformants and parent isolate were subjected for stability within new host. IncX3 plasmid encoding blaNDM-4 was transferred in host when imipenem (0.5µg/ml) screen agar was used for selection of transformants which are coharbouring resistance for aminoglycosides and quinolone. Plasmid was successfully expanded within all the six recipients till 55th serial passages. Transcriptional expression with NDM gene was variable for parent isolates though for new hosts it was showing random increased pattern in Proteus, E.coli, and DH5α. This could highlight, external carbapenem pressure helps in maintenance and expression of blaNDM-4 within different host range and epidemiological significance and will help in tracking the genetic vehicle responsible for their transmission,restricting their spread.


Plant Disease ◽  
2010 ◽  
Vol 94 (3) ◽  
pp. 293-297 ◽  
Author(s):  
D. L. Stuteville ◽  
W. L. Graves ◽  
L. J. Dixon ◽  
L. A. Castlebury ◽  
A. M. Minnis

Uromyces ciceris-arietini has been reported on Cicer arietinum (chickpea) and Medicago polyceratia. Plants of Medicago polymorpha in Riverside and San Diego, CA were collected with severe rust caused by U. ciceris-arietini. To confirm the identification and potential new host range, a monouredinial isolate of U. ciceris-arietini from M. polymorpha was inoculated on eight accessions each of C. arietinum and M. polyceratia. All plants showed symptoms of the disease. Consequently, a range of fabaceous hosts were evaluated for their reaction to U. ciceris-arietini. New hosts for U. ciceris-arietini included 29 species of Medicago, specifically M. arabica, M. blancheana, M. ciliaris, M. constricta, M. coronata, M. doliata, M. granadensis, M. intertexta, M. italica, M. laciniata, M. lanigera, M. lesinsii, M. lupulina, M. minima, M. murex, M. muricoleptis, M. orbicularis, M. praecox, M. radiata, M. rigidula, M. rotata, M. rugosa, M. sativa, M. sauvagei, M. scutellata, M. soleirolii, M. tenoreana, M. truncatula, and M. varia, and three species of Melilotus, specifically M. italicus, M. speciosus, and M. spicatus. This isolate of U. ciceris-arietini produced no symptoms on plants in the 33 accessions tested in the genera Anthyllis, Astragalus, Lotus, and Lupinus. DNA sequences are provided to aid in the identification of this pathogen.


2019 ◽  
Vol 374 (1782) ◽  
pp. 20190017 ◽  
Author(s):  
Brian R. Wasik ◽  
Emmie de Wit ◽  
Vincent Munster ◽  
James O. Lloyd-Smith ◽  
Luis Martinez-Sobrido ◽  
...  

The critical step in the emergence of a new epidemic or pandemic viral pathogen occurs after it infects the initial spillover host and then is successfully transmitted onwards, causing an outbreak chain of transmission within that new host population. Crossing these choke points sets a pathogen on the pathway to epidemic emergence. While many viruses spill over to infect new or alternative hosts, only a few accomplish this transition—and the reasons for the success of those pathogens are still unclear. Here, we consider this issue related to the emergence of animal viruses, where factors involved likely include the ability to efficiently infect the new animal host, the demographic features of the initial population that favour onward transmission, the level of shedding and degree of susceptibility of individuals of that population, along with pathogen evolution favouring increased replication and more efficient transmission among the new host individuals. A related form of emergence involves mutations that increased spread or virulence of an already-known virus within its usual host. In all of these cases, emergence may be due to altered viral properties, changes in the size or structure of the host populations, ease of transport, climate change or, in the case of arboviruses, to the expansion of the arthropod vectors. Here, we focus on three examples of viruses that have gained efficient onward transmission after spillover: influenza A viruses that are respiratory transmitted, HIV, a retrovirus, that is mostly blood or mucosal transmitted, and canine parvovirus that is faecal:oral transmitted. We describe our current understanding of the changes in the viruses that allowed them to overcome the barriers that prevented efficient replication and spread in their new hosts. We also briefly outline how we could gain a better understanding of the mechanisms and variability in order to better anticipate these events in the future. This article is part of the theme issue ‘Dynamic and integrative approaches to understanding pathogen spillover’.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Buddhadeb Roy ◽  
Shailja Dubey ◽  
Amalendu Ghosh ◽  
Shalu Misra Shukla ◽  
Bikash Mandal ◽  
...  

AbstractLeaf curl, a whitefly-borne begomovirus disease, is the cause of frequent epidemic in chili. In the present study, transmission parameters involved in tripartite interaction are estimated to simulate disease dynamics in a population dynamics model framework. Epidemic is characterized by a rapid conversion rate of healthy host population into infectious type. Infection rate as basic reproduction number, R0 = 13.54, has indicated a high rate of virus transmission. Equilibrium population of infectious host and viruliferous vector are observed to be sensitive to the immigration parameter. A small increase in immigration rate of viruliferous vector increased the population of both infectious host and viruliferous vector. Migrant viruliferous vectors, acquisition, and transmission rates as major parameters in the model indicate leaf curl epidemic is predominantly a vector -mediated process. Based on underlying principles of temperature influence on vector population abundance and transmission parameters, spatio-temporal pattern of disease risk predicted is noted to correspond with leaf curl distribution pattern in India. Temperature in the range of 15–35 °C plays an important role in epidemic as both vector population and virus transmission are influenced by temperature. Assessment of leaf curl dynamics would be a useful guide to crop planning and evolution of efficient management strategies.


Author(s):  
Quentin Lamy-Besnier ◽  
Bryan Brancotte ◽  
Hervé Ménager ◽  
Laurent Debarbieux

Abstract Motivation Viruses are ubiquitous in the living world, and their ability to infect more than one host defines their host range. However, information about which virus infects which host, and about which host is infected by which virus, is not readily available. Results We developed a web-based tool called the Viral Host Range database to record, analyze and disseminate experimental host range data for viruses infecting archaea, bacteria and eukaryotes. Availability The ViralHostRangeDB application is available from https://viralhostrangedb.pasteur.cloud. Its source code is freely available from the Gitlab hub of Institut Pasteur (https://gitlab.pasteur.fr/hub/viralhostrangedb).


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 448
Author(s):  
Sineewanlaya Wichit ◽  
Nuttamonpat Gumpangseth ◽  
Rodolphe Hamel ◽  
Sakda Yainoy ◽  
Siwaret Arikit ◽  
...  

Chikungunya and Zika viruses, both transmitted by mosquito vectors, have globally re-emerged over for the last 60 years and resulted in crucial social and economic concerns. Presently, there is no specific antiviral agent or vaccine against these debilitating viruses. Understanding viral–host interactions is needed to develop targeted therapeutics. However, there is presently limited information in this area. In this review, we start with the updated virology and replication cycle of each virus. Transmission by similar mosquito vectors, frequent co-circulation, and occurrence of co-infection are summarized. Finally, the targeted host proteins/factors used by the viruses are discussed. There is an urgent need to better understand the virus–host interactions that will facilitate antiviral drug development and thus reduce the global burden of infections caused by arboviruses.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1261
Author(s):  
Khatuna Makalatia ◽  
Elene Kakabadze ◽  
Nata Bakuradze ◽  
Nino Grdzelishvili ◽  
Ben Stamp ◽  
...  

Bacteriophages that lyse Salmonella enterica are potential tools to target and control Salmonella infections. Investigating the host range of Salmonella phages is a key to understand their impact on bacterial ecology, coevolution and inform their use in intervention strategies. Virus–host infection networks have been used to characterize the “predator–prey” interactions between phages and bacteria and provide insights into host range and specificity. Here, we characterize the target-range and infection profiles of 13 Salmonella phage clones against a diverse set of 141 Salmonella strains. The environmental source and taxonomy contributed to the observed infection profiles, and genetically proximal phages shared similar infection profiles. Using in vitro infection data, we analyzed the structure of the Salmonella phage–bacteria infection network. The network has a non-random nested organization and weak modularity suggesting a gradient of target-range from generalist to specialist species with nested subsets, which are also observed within and across the different phage infection profile groups. Our results have implications for our understanding of the coevolutionary mechanisms shaping the ecological interactions between Salmonella phages and their bacterial hosts and can inform strategies for targeting Salmonella enterica with specific phage preparations.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 504
Author(s):  
Ananda Ayyappan Jaguva Vasudevan ◽  
Daniel Becker ◽  
Tom Luedde ◽  
Holger Gohlke ◽  
Carsten Münk

Non-human primates (NHP) are an important source of viruses that can spillover to humans and, after adaptation, spread through the host population. Whereas HIV-1 and HTLV-1 emerged as retroviral pathogens in humans, a unique class of retroviruses called foamy viruses (FV) with zoonotic potential are occasionally detected in bushmeat hunters or zookeepers. Various FVs are endemic in numerous mammalian natural hosts, such as primates, felines, bovines, and equines, and other animals, but not in humans. They are apathogenic, and significant differences exist between the viral life cycles of FV and other retroviruses. Importantly, FVs replicate in the presence of many well-defined retroviral restriction factors such as TRIM5α, BST2 (Tetherin), MX2, and APOBEC3 (A3). While the interaction of A3s with HIV-1 is well studied, the escape mechanisms of FVs from restriction by A3 is much less explored. Here we review the current knowledge of FV biology, host restriction factors, and FV–host interactions with an emphasis on the consequences of FV regulatory protein Bet binding to A3s and outline crucial open questions for future studies.


2008 ◽  
Vol 68 (3) ◽  
pp. 611-615 ◽  
Author(s):  
LA. Anjos ◽  
WO. Almeida ◽  
A. Vasconcellos ◽  
EMX. Freire ◽  
CFD. Rocha

From January to April 2006, 37 specimens of Hemidactylus mabouia were collected in houses, in the municipality of Barbalha (7° 20' S and 39° 18' W), Ceará State, Northeast Brazil. Among the individuals captured, 17 were infected with pentastomids, totalling a prevalence of 45.9%, which did not differ between sexes. Host size did not influence the infection intensity. Two species of pentastomids were found: Raillietiella frenatus and R. mottae. The prevalence of R. frenatus (43.2%) was higher than R. mottae (2.7%), whereas the infection intensity of R. frenatus was comparatively lower (1.8 ± 1.4) than R. mottae (36 parasites in a single host). Overall mean intensity of infection was 3.8 ± 8.4 pentastomids. We found no pentastomid infecting juvenile geckos. The parameters of infection in this host population are in accordance to the findings of other studies, in which the high parasitism rate was associated to the feeding habits of geckos living in houses and buildings. Hemidactylus mabouia is a new host to R. mottae and the infection by R. frenatus is the first record of the occurrence this pentastomid species in Brazil.


Sign in / Sign up

Export Citation Format

Share Document