scholarly journals Genomic Epidemiology and Evolution of Escherichia coli in Wild Animals in Mexico

mSphere ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Robert Murphy ◽  
Martin Palm ◽  
Ville Mustonen ◽  
Jonas Warringer ◽  
Anne Farewell ◽  
...  

ABSTRACT Escherichia coli is a common bacterial species in the gastrointestinal tracts of warm-blooded animals and humans. Pathogenicity and antimicrobial resistance in E. coli may emerge via host switching from animal reservoirs. Despite its potential clinical importance, knowledge of the population structure of commensal E. coli within wild hosts and the epidemiological links between E. coli in nonhuman hosts and E. coli in humans is still scarce. In this study, we analyzed the whole-genome sequencing data of a collection of 119 commensal E. coli strains recovered from the guts of 55 mammal and bird species in Mexico and Venezuela in the 1990s. We observed low concordance between the population structures of E. coli isolates colonizing wild animals and the phylogeny, taxonomy, and ecological and physiological attributes of the host species, with distantly related E. coli strains often colonizing the same or similar host species and distantly related host species often hosting closely related E. coli strains. We found no evidence for recent transmission of E. coli genomes from wild animals to either domesticated animals or humans. However, multiple livestock- and human-related virulence factor genes were present in E. coli of wild animals, including virulence factors characteristic of Shiga toxin-producing E. coli (STEC) and atypical enteropathogenic E. coli (aEPEC), where several isolates from wild hosts harbored the locus of enterocyte effacement (LEE) pathogenicity island. Moreover, E. coli isolates from wild animal hosts often harbored known antibiotic resistance determinants, including those against ciprofloxacin, aminoglycosides, tetracyclines, and beta-lactams, with some determinants present in multiple, distantly related E. coli lineages colonizing very different host animals. We conclude that genome pools of E. coli colonizing the guts of wild animals and humans share virulence and antibiotic resistance genes, underscoring the idea that wild animals could serve as reservoirs for E. coli pathogenicity in human and livestock infections. IMPORTANCE Escherichia coli is a clinically important bacterial species implicated in human- and livestock-associated infections worldwide. The bacterium is known to reside in the guts of humans, livestock, and wild animals. Although wild animals are recognized as potential reservoirs for pathogenic E. coli strains, the knowledge of the population structure of E. coli in wild hosts is still scarce. In this study, we used fine resolution of whole-genome sequencing to provide novel insights into the evolution of E. coli genomes from a small yet diverse collection of strains recovered within a broad range of wild animal species (including mammals and birds), the coevolution of E. coli strains with their hosts, and the genetics of pathogenicity of E. coli strains in wild hosts in Mexico. Our results provide evidence for the clinical importance of wild animals as reservoirs for pathogenic strains and highlight the need to include nonhuman hosts in the surveillance programs for E. coli infections.

2020 ◽  
Author(s):  
Robert Murphy ◽  
Martin Palm ◽  
Ville Mustonen ◽  
Jonas Warringer ◽  
Anne Farewell ◽  
...  

AbstractEscherichia coli is a common bacterial species in the gastrointestinal tracts of warm-blooded animals and humans. Pathogenic and antimicrobial resistance in E. coli may emerge via host switching from animal reservoirs. Despite its potential clinical importance, knowledge of the population structure of commensal E. coli within wild hosts and the epidemiological links between E. coli in non-human hosts and E. coli in humans is still scarce. In this study, we analysed the whole genome sequencing data of a collection of 119 commensal E. coli recovered from the guts of 68 mammal and bird species in Mexico and Venezuela in the 1990s. We observed low concordance between the population structures of E. coli colonizing wild animals and the phylogeny, taxonomy and ecological and physiological attributes of the host species, with distantly related E. coli often colonizing the same or similar host species and distantly related host species often hosting closely related E. coli. We found no evidence for recent transmission of E. coli genomes from wild animals to either domesticated animals or humans. However, multiple livestock- and human-related virulence factor genes were present in E. coli of wild animals, including virulence factors characteristic for Shiga toxin-producing E. coli (STEC) and atypical enteropathogenic E. coli (aEPEC), where several isolates from wild hosts harboured the locus of enterocyte effacement (LEE) pathogenicity island. Moreover, E. coli in wild animal hosts often harboured known antibiotic resistance determinants, including against ciprofloxacin, aminoglycosides, tetracyclines and beta-lactams, with some determinants present in multiple, distantly related E. coli lineages colonizing very different host animals. We conclude that although the genome pools of E. coli colonizing wild animal and human gut are well separated, they share virulence and antibiotic resistance genes and E. coli underscoring that wild animals could serve as reservoirs for E. coli pathogenicity in human and livestock infections.ImportanceEscherichia coli is a clinically importance bacterial species implicated in human and livestock associated infections worldwide. The bacterium is known to reside in the guts of humans, livestock and wild animals. Although wild animals are recognized to serve as potential reservoirs for pathogenic E. coli strains, the knowledge of the population structure of E. coli in wild hosts is still scarce. In this study we used the fine resolution of whole genome sequencing to provide novel insights into the evolution of E. coli genomes within a broad range of wild animal species (including mammals and birds), the co-evolution of E. coli strains with their hosts and the genetics of pathogenicity of E. coli strains in wild hosts. Our results provide evidence for the clinical importance of wild animals as reservoirs for pathogenic strains and necessitate the inclusion of non-human hosts in the surveillance programs for E. coli infections.


2016 ◽  
Vol 55 (2) ◽  
pp. 616-623 ◽  
Author(s):  
Marie A. Chattaway ◽  
Ulf Schaefer ◽  
Rediat Tewolde ◽  
Timothy J. Dallman ◽  
Claire Jenkins

ABSTRACTEscherichia coliandShigellaspecies are closely related and genetically constitute the same species. Differentiating between these two pathogens and accurately identifying the four species ofShigellaare therefore challenging. The organism-specific bioinformatics whole-genome sequencing (WGS) typing pipelines at Public Health England are dependent on the initial identification of the bacterial species by use of a kmer-based approach. Of the 1,982Escherichia coliandShigellasp. isolates analyzed in this study, 1,957 (98.4%) had concordant results by both traditional biochemistry and serology (TB&S) and the kmer identification (ID) derived from the WGS data. Of the 25 mismatches identified, 10 were enteroinvasiveE. coliisolates that were misidentified asShigella flexneriorS. boydiiby the kmer ID, and 8 wereS. flexneriisolates misidentified by TB&S asS. boydiidue to nonfunctionalS. flexneriO antigen biosynthesis genes. Analysis of the population structure based on multilocus sequence typing (MLST) data derived from the WGS data showed that the remaining discrepant results belonged to clonal complex 288 (CC288), comprising bothS. boydiiandS. dysenteriaestrains. Mismatches between the TB&S and kmer ID results were explained by the close phylogenetic relationship between the two species and were resolved with reference to the MLST data.Shigellacan be differentiated fromE. coliand accurately identified to the species level by use of kmer comparisons and MLST. Analysis of the WGS data provided explanations for the discordant results between TB&S and WGS data, revealed the true phylogenetic relationships between different species ofShigella, and identified emerging pathoadapted lineages.


2018 ◽  
Vol 6 (10) ◽  
Author(s):  
Jingchao Chen ◽  
Yi Li ◽  
Kun Zhang ◽  
Hailei Wang

ABSTRACT The genomes of many strains of Escherichia coli have been sequenced, as this organism is a classic model bacterium. Here, we report the genome sequence of Escherichia coli DH5α, which is resistant to a T4 bacteriophage (CCTCC AB 2015375), while its other homologous E. coli strains, such as E. coli BL21, DH10B, and MG1655, are not resistant to phage invasions. Thus, understanding of the genome of the DH5α strain, along with comparative analysis of its genome sequence along with other sequences of E. coli strains, may help to reveal the bacteriophage resistance mechanism of E. coli .


2014 ◽  
Vol 58 (8) ◽  
pp. 4814-4825 ◽  
Author(s):  
Tracy H. Hazen ◽  
LiCheng Zhao ◽  
Mallory A. Boutin ◽  
Angela Stancil ◽  
Gwen Robinson ◽  
...  

ABSTRACTThe IncA/C plasmids have been implicated for their role in the dissemination of β-lactamases, including gene variants that confer resistance to expanded-spectrum cephalosporins, which are often the treatment of last resort against multidrug-resistant, hospital-associated pathogens. AblaFOX-5gene was detected in 14Escherichia coliand 16Klebsiellaisolates that were cultured from perianal swabs of patients admitted to an intensive care unit (ICU) of the University of Maryland Medical Center (UMMC) in Baltimore, MD, over a span of 3 years. Four of the FOX-encoding isolates were obtained from subsequent samples of patients that were initially negative for an AmpC β-lactamase upon admission to the ICU, suggesting that the AmpC β-lactamase-encoding plasmid was acquired while the patient was in the ICU. The genomes of fiveE. coliisolates and sixKlebsiellaisolates containingblaFOX-5were selected for sequencing based on their plasmid profiles. An ∼167-kb IncA/C plasmid encoding the FOX-5 β-lactamase, a CARB-2 β-lactamase, additional antimicrobial resistance genes, and heavy metal resistance genes was identified. Another FOX-5-encoding IncA/C plasmid that was nearly identical except for a variable region associated with the resistance genes was also identified. To our knowledge, these plasmids represent the first FOX-5-encoding plasmids sequenced. We used comparative genomics to describe the genetic diversity of a plasmid encoding a FOX-5 β-lactamase relative to the whole-genome diversity of 11E. coliandKlebsiellaisolates that carry this plasmid. Our findings demonstrate the utility of whole-genome sequencing for tracking of plasmid and antibiotic resistance gene distribution in health care settings.


2011 ◽  
Vol 2 (2) ◽  
pp. 93-96
Author(s):  
Ritu Agarwal ◽  
Chaman Deep ◽  
Saurabh K Patel ◽  
Ashok K Jain ◽  
Gopal Nath

Objective: To explore the genetic relatedness among the Escherichia coli isolates recovered from rectal mucosa of patients with Ulcerative Colitis(UC) as well as from non specific diarrhoea patients by using ERIC PCR (whole genome analysis). Material & Methods: A total of 44 strains of E coli, each from patients suffering from UC with exacerbation while on maintenance therapy, were isolated to see if there is any association with specific genotype of E coli with the clini-cal condition. For comparison, 20 strains of E coli were also isolated from patients suffering from non specific diarrhoea. These isolates were subjected to ERIC PCR for analysing similarity/ dissimilarity with each other based on the distribution of ERIC sequences in the whole genome of the bacterial species. Results: The dendrogram prepared on the basis of banding pattern showed that majority of UC patients (39/44, 88.6%) grouped in to one major cluster while second major cluster comprised mostly strains isolated from patients with non specific diarrhoea i.e. controls (17/18, 94.4%). Moreover, in the cluster representing UC patients, a total of 11 strains were observed to be genotypically similar followed by 8 strains by ERIC PCR. Conclusion: Our results strongly indicate that specific Escherichia coli strains may be involved/ associated with UC and its relapse. Key Words: Ulcerative colitis; Escherichia coli; ERIC; PCR DOI: http://dx.doi.org/10.3126/ajms.v2i2.4769Asian Journal of Medical Sciences 2 (2011) 93-96


2020 ◽  
Vol 6 (7) ◽  
Author(s):  
Bede Constantinides ◽  
Kevin K. Chau ◽  
T. Phuong Quan ◽  
Gillian Rodger ◽  
Monique I. Andersson ◽  
...  

Escherichia coli and Klebsiella spp. are important human pathogens that cause a wide spectrum of clinical disease. In healthcare settings, sinks and other wastewater sites have been shown to be reservoirs of antimicrobial-resistant E. coli and Klebsiella spp., particularly in the context of outbreaks of resistant strains amongst patients. Without focusing exclusively on resistance markers or a clinical outbreak, we demonstrate that many hospital sink drains are abundantly and persistently colonized with diverse populations of E. coli , Klebsiella pneumoniae and Klebsiella oxytoca , including both antimicrobial-resistant and susceptible strains. Using whole-genome sequencing of 439 isolates, we show that environmental bacterial populations are largely structured by ward and sink, with only a handful of lineages, such as E. coli ST635, being widely distributed, suggesting different prevailing ecologies, which may vary as a result of different inputs and selection pressures. Whole-genome sequencing of 46 contemporaneous patient isolates identified one (2 %; 95 % CI 0.05–11 %) E. coli urine infection-associated isolate with high similarity to a prior sink isolate, suggesting that sinks may contribute to up to 10 % of infections caused by these organisms in patients on the ward over the same timeframe. Using metagenomics from 20 sink-timepoints, we show that sinks also harbour many clinically relevant antimicrobial resistance genes including bla CTX-M, bla SHV and mcr, and may act as niches for the exchange and amplification of these genes. Our study reinforces the potential role of sinks in contributing to Enterobacterales infection and antimicrobial resistance in hospital patients, something that could be amenable to intervention. This article contains data hosted by Microreact.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Jonathan D. Partridge ◽  
Nguyen T. Q. Nhu ◽  
Yann S. Dufour ◽  
Rasika M. Harshey

ABSTRACT Many bacteria use flagellum-driven motility to swarm or move collectively over a surface terrain. Bacterial adaptations for swarming can include cell elongation, hyperflagellation, recruitment of special stator proteins, and surfactant secretion, among others. We recently demonstrated another swarming adaptation in Escherichia coli, wherein the chemotaxis pathway is remodeled to decrease tumble bias (increase run durations), with running speeds increased as well. We show here that the modification of motility parameters during swarming is not unique to E. coli but is shared by a diverse group of bacteria we examined—Proteus mirabilis, Serratia marcescens, Salmonella enterica, Bacillus subtilis, and Pseudomonas aeruginosa—suggesting that increasing run durations and speeds are a cornerstone of swarming. IMPORTANCE Bacteria within a swarm move characteristically in packs, displaying an intricate swirling motion in which hundreds of dynamic rafts continuously form and dissociate as the swarm colonizes an increasing expanse of territory. The demonstrated property of E. coli to reduce its tumble bias and hence increase its run duration during swarming is expected to maintain and promote side-by-side alignment and cohesion within the bacterial packs. In this study, we observed a similar low tumble bias in five different bacterial species, both Gram positive and Gram negative, each inhabiting a unique habitat and posing unique problems to our health. The unanimous display of an altered run-tumble bias in swarms of all species examined in this investigation suggests that this behavioral adaptation is crucial for swarming.


2015 ◽  
Vol 198 (1) ◽  
pp. 7-11 ◽  
Author(s):  
Regine Hengge ◽  
Michael Y. Galperin ◽  
Jean-Marc Ghigo ◽  
Mark Gomelsky ◽  
Jeffrey Green ◽  
...  

In recent years,Escherichia colihas served as one of a few model bacterial species for studying cyclic di-GMP (c-di-GMP) signaling. The widely usedE. coliK-12 laboratory strains possess 29 genes encoding proteins with GGDEF and/or EAL domains, which include 12 diguanylate cyclases (DGC), 13 c-di-GMP-specific phosphodiesterases (PDE), and 4 “degenerate” enzymatically inactive proteins. In addition, six new GGDEF and EAL (GGDEF/EAL) domain-encoding genes, which encode two DGCs and four PDEs, have recently been found in genomic analyses of commensal and pathogenicE. colistrains. As a group of researchers who have been studying the molecular mechanisms and the genomic basis of c-di-GMP signaling inE. coli, we now propose a general and systematicdgcandpdenomenclature for the enzymatically active GGDEF/EAL domain-encoding genes of this model species. This nomenclature is intuitive and easy to memorize, and it can also be applied to additional genes and proteins that might be discovered in various strains ofE. coliin future studies.


2018 ◽  
Vol 85 (1) ◽  
Author(s):  
Elizabeth A. Miller ◽  
Timothy J. Johnson ◽  
George Omondi ◽  
Edward R. Atwill ◽  
Lynne A. Isbell ◽  
...  

ABSTRACTThere is growing evidence that anthropogenic sources of antibiotics and antimicrobial-resistant bacteria can spill over into natural ecosystems, raising questions about the role wild animals play in the emergence, maintenance, and dispersal of antibiotic resistance genes. In particular, we lack an understanding of how resistance genes circulate within wild animal populations, including whether specific host characteristics, such as social associations, promote interhost transmission of these genes. In this study, we used social network analysis to explore the forces shaping population-level patterns of resistantEscherichia coliin wild giraffe (Giraffa camelopardalis) and assess the relative importance of social contact for the dissemination of resistantE. colibetween giraffe. Of 195 giraffe sampled, only 5.1% harboredE. coliisolates resistant to one or more tested antibiotics. Whole-genome sequencing on a subset of resistant isolates revealed a number of acquired resistance genes with linkages to mobile genetic elements. However, we found no evidence that the spread of resistance genes among giraffe was facilitated by interhost associations. Giraffe with lower social degree were more likely to harbor resistantE. coli, but this relationship was likely driven by a correlation between an individual’s social connectedness and age. Indeed, resistantE. coliwas most frequently detected in socially isolated neonates, indicating that resistantE. colimay have a selective advantage in the gastrointestinal tracts of neonates compared to other age classes. Taken together, these results suggest that the maintenance of antimicrobial-resistant bacteria in wild populations may, in part, be determined by host traits and microbial competition dynamics within the host.IMPORTANCEAntimicrobial resistance represents a significant threat to human health, food security, and the global economy. To fully understand the evolution and dissemination of resistance genes, a complete picture of antimicrobial resistance in all biological compartments, including natural ecosystems, is required. The environment and wild animals may act as reservoirs for anthropogenically derived resistance genes that could be transferrable to clinically relevant bacteria of humans and domestic animals. Our study investigated the possible transmission mechanisms for antimicrobial-resistant bacteria within a wild animal population and, more broadly, contributes to our understanding of how resistance genes are spread and maintained in natural ecosystems.


2013 ◽  
Vol 80 (4) ◽  
pp. 1394-1402 ◽  
Author(s):  
Masahiro Kusumoto ◽  
Dai Fukamizu ◽  
Yoshitoshi Ogura ◽  
Eiji Yoshida ◽  
Fumiko Yamamoto ◽  
...  

ABSTRACTInsertion sequences (ISs) are the simplest transposable elements and are widely distributed in bacteria; however, they also play important roles in genome evolution. We recently identified a protein called IS excision enhancer (IEE) in enterohemorrhagicEscherichia coli(EHEC) O157. IEE promotes the excision of IS elements belonging to the IS3family, such as IS629, as well as several other families. IEE-mediated IS excision generates various genomic deletions that lead to the diversification of the bacterial genome. IEE has been found in a broad range of bacterial species; however, among sequencedE. colistrains, IEE is primarily found in EHEC isolates. In this study, we investigated non-EHEC pathogenicE. colistrains isolated from domestic animals and found that IEE is distributed in specific lineages of enterotoxigenicE. coli(ETEC) strains of serotypes O139 or O149 isolated from swine. Theieegene is located within integrative elements that are similar to SpLE1 of EHEC O157. Alliee-positive ETEC lineages also contained multiple copies of IS629, a preferred substrate of IEE, and their genomic locations varied significantly between strains, as observed in O157. These data suggest that IEE may have been transferred among EHEC and ETEC in swine via SpLE1 or SpLE1-like integrative elements. In addition, IS629is actively moving in the ETEC O139 and O149 genomes and, as in EHEC O157, is promoting the diversification of these genomes in combination with IEE.


Sign in / Sign up

Export Citation Format

Share Document