scholarly journals Mechanism of High-Level Daptomycin Resistance in Corynebacterium striatum

mSphere ◽  
2018 ◽  
Vol 3 (4) ◽  
Author(s):  
Nicholas K. Goldner ◽  
Christopher Bulow ◽  
Kevin Cho ◽  
Meghan Wallace ◽  
Fong-Fu Hsu ◽  
...  

ABSTRACT Daptomycin, a last-line-of-defense antibiotic for treating Gram-positive infections, is experiencing clinical failure against important infectious agents, including Corynebacterium striatum. The recent transition of daptomycin to generic status is projected to dramatically increase availability, use, and clinical failure. Here we confirm the genetic mechanism of high-level daptomycin resistance (HLDR; MIC = >256 µg/ml) in C. striatum, which evolved within a patient during daptomycin therapy, a phenotype recapitulated in vitro. In all 8 independent cases tested, loss-of-function mutations in phosphatidylglycerol synthase (pgsA2) were necessary and sufficient for high-level daptomycin resistance. Through lipidomic and biochemical analysis, we demonstrate that daptomycin’s activity is dependent on the membrane phosphatidylglycerol (PG) concentration. Until now, the verification of PG as the in vivo target of daptomycin has proven difficult since tested cell model systems were not viable without membrane PG. C. striatum becomes daptomycin resistant at a high level by removing PG from the membrane and changing the membrane composition to maintain viability. This work demonstrates that loss-of-function mutation in pgsA2 and the loss of membrane PG are necessary and sufficient to produce high-level resistance to daptomycin in C. striatum. IMPORTANCE Antimicrobial resistance threatens the efficacy of antimicrobial treatment options, including last-line-of-defense drugs. Understanding how this resistance develops can help direct antimicrobial stewardship efforts and is critical to designing the next generation of antimicrobial therapies. Here we determine how Corynebacterium striatum, a skin commensal and opportunistic pathogen, evolved high-level resistance to a drug of last resort, daptomycin. Through a single mutation, this pathogen was able to remove the daptomycin’s target, phosphatidylglycerol (PG), from the membrane and evade daptomycin’s bactericidal activity. We found that additional compensatory changes were not necessary to support the removal of PG and replacement with phosphatidylinositol (PI). The ease with which C. striatum evolved high-level resistance is cause for alarm and highlights the importance of screening new antimicrobials against a wide range of clinical pathogens which may harbor unique capacities for resistance evolution.

2020 ◽  
Vol 65 (1) ◽  
pp. e01948-20
Author(s):  
Dalin Rifat ◽  
Si-Yang Li ◽  
Thomas Ioerger ◽  
Keshav Shah ◽  
Jean-Philippe Lanoix ◽  
...  

ABSTRACTThe nitroimidazole prodrugs delamanid and pretomanid comprise one of only two new antimicrobial classes approved to treat tuberculosis (TB) in 50 years. Prior in vitro studies suggest a relatively low barrier to nitroimidazole resistance in Mycobacterium tuberculosis, but clinical evidence is limited to date. We selected pretomanid-resistant M. tuberculosis mutants in two mouse models of TB using a range of pretomanid doses. The frequency of spontaneous resistance was approximately 10−5 CFU. Whole-genome sequencing of 161 resistant isolates from 47 mice revealed 99 unique mutations, of which 91% occurred in 1 of 5 genes previously associated with nitroimidazole activation and resistance, namely, fbiC (56%), fbiA (15%), ddn (12%), fgd (4%), and fbiB (4%). Nearly all mutations were unique to a single mouse and not previously identified. The remaining 9% of resistant mutants harbored mutations in Rv2983 (fbiD), a gene not previously associated with nitroimidazole resistance but recently shown to be a guanylyltransferase necessary for cofactor F420 synthesis. Most mutants exhibited high-level resistance to pretomanid and delamanid, although Rv2983 and fbiB mutants exhibited high-level pretomanid resistance but relatively small changes in delamanid susceptibility. Complementing an Rv2983 mutant with wild-type Rv2983 restored susceptibility to pretomanid and delamanid. By quantifying intracellular F420 and its precursor Fo in overexpressing and loss-of-function mutants, we provide further evidence that Rv2983 is necessary for F420 biosynthesis. Finally, Rv2983 mutants and other F420H2-deficient mutants displayed hypersusceptibility to some antibiotics and to concentrations of malachite green found in solid media used to isolate and propagate mycobacteria from clinical samples.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Kirthana M. V. Sindhe ◽  
Wesley Wu ◽  
Jenny Legac ◽  
Yong-Kang Zhang ◽  
Eric E. Easom ◽  
...  

ABSTRACT New antimalarial drugs are needed. The benzoxaborole AN13762 showed excellent activity against cultured Plasmodium falciparum, against fresh Ugandan P. falciparum isolates, and in murine malaria models. To gain mechanistic insights, we selected in vitro for P. falciparum isolates resistant to AN13762. In all of 11 independent selections with 100 to 200 nM AN13762, the 50% inhibitory concentration (IC50) increased from 18–118 nM to 180–890 nM, and whole-genome sequencing of resistant parasites demonstrated mutations in prodrug activation and resistance esterase (PfPARE). The introduction of PfPARE mutations led to a similar level of resistance, and recombinant PfPARE hydrolyzed AN13762 to the benzoxaborole AN10248, which has activity similar to that of AN13762 but for which selection of resistance was not readily achieved. Parasites further selected with micromolar concentrations of AN13762 developed higher-level resistance (IC50, 1.9 to 5.0 μM), and sequencing revealed additional mutations in any of 5 genes, 4 of which were associated with ubiquitination/sumoylation enzyme cascades; the introduction of one of these mutations, in SUMO-activating enzyme subunit 2, led to a similar level of resistance. The other gene mutated in highly resistant parasites encodes the P. falciparum cleavage and specificity factor homolog PfCPSF3, previously identified as the antimalarial target of another benzoxaborole. Parasites selected for resistance to AN13762 were cross-resistant with a close analog, AN13956, but not with standard antimalarials, AN10248, or other benzoxaboroles known to have different P. falciparum targets. Thus, AN13762 appears to have a novel mechanism of antimalarial action and multiple mechanisms of resistance, including loss of function of PfPARE preventing activation to AN10248, followed by alterations in ubiquitination/sumoylation pathways or PfCPSF3. IMPORTANCE Benzoxaboroles are under study as potential new drugs to treat malaria. One benzoxaborole, AN13762, has potent activity and promising features, but its mechanisms of action and resistance are unknown. To gain insights into these mechanisms, we cultured malaria parasites with nonlethal concentrations of AN13762 and generated parasites with varied levels of resistance. Parasites with low-level resistance had mutations in PfPARE, which processes AN13762 into an active metabolite; PfPARE mutations prevented this processing. Parasites with high-level resistance had mutations in any of a number of enzymes, mostly those involved in stress responses. Parasites selected for AN13762 resistance were not resistant to other antimalarials, suggesting novel mechanisms of action and resistance for AN13762, a valuable feature for a new class of antimalarial drugs.


2011 ◽  
Vol 55 (11) ◽  
pp. 5262-5266 ◽  
Author(s):  
Sophie A. Granier ◽  
Laura Hidalgo ◽  
Alvaro San Millan ◽  
Jose Antonio Escudero ◽  
Belen Gutierrez ◽  
...  

ABSTRACTThe 16S rRNA methyltransferase ArmA is a worldwide emerging determinant that confers high-level resistance to most clinically relevant aminoglycosides. We report here the identification and characterization of a multidrug-resistantSalmonella entericasubspecies I.4,12:i:− isolate recovered from chicken meat sampled in a supermarket on February 2009 in La Reunion, a French island in the Indian Ocean. Susceptibility testing showed an unusually high-level resistance to gentamicin, as well as to ampicillin, expanded-spectrum cephalosporins and amoxicillin-clavulanate. Molecular analysis of the 16S rRNA methyltransferases revealed presence of thearmAgene, together withblaTEM-1,blaCMY-2, andblaCTX-M-3. All of these genes could be transferreden blocthrough conjugation intoEscherichia coliat a frequency of 10−5CFU/donor. Replicon typing and S1 pulsed-field gel electrophoresis revealed that thearmAgene was borne on an ∼150-kb broad-host-range IncP plasmid, pB1010. To elucidate howarmAhad integrated in pB1010, a PCR mapping strategy was developed for Tn1548, the genetic platform forarmA.The gene was embedded in a Tn1548-like structure, albeit with a deletion of the macrolide resistance genes, and an IS26was inserted within themelgene. To our knowledge, this is the first report of ArmA methyltransferase in food, showing a novel route of transmission for this resistance determinant. Further surveillance in food-borne bacteria will be crucial to determine the role of food in the spread of 16S rRNA methyltransferase genes worldwide.


2019 ◽  
Vol 64 (1) ◽  
Author(s):  
Alina Iovleva ◽  
Roberta T. Mettus ◽  
Christi L. McElheny ◽  
Marissa P. Griffith ◽  
Mustapha M. Mustapha ◽  
...  

ABSTRACT OXA-232 is an OXA-48-group class D β-lactamase that hydrolyzes expanded-spectrum cephalosporins and carbapenems at low levels. Clinical strains producing OXA-232 are sometimes susceptible to carbapenems, making it difficult to identify them in the clinical microbiology laboratory. We describe the development of carbapenem resistance in sequential clinical isolates of Raoultella ornithinolytica carrying blaOXA-232 in a hospitalized patient, where the ertapenem MIC increased from 0.5 μg/ml to 512 μg/ml and the meropenem MIC increased from 0.125 μg/ml to 32 μg/ml during the course of ertapenem therapy. Whole-genome sequencing (WGS) analysis identified loss-of-function mutations in ompC and ompF in carbapenem-resistant isolates that were not present in the initial carbapenem-susceptible isolate. Complementation of a carbapenem-resistant isolate with an intact ompF gene resulted in 16- to 32-fold reductions in carbapenem MICs, whereas complementation with intact ompC resulted in a 2-fold reduction in carbapenem MICs. Additionally, blaOXA-232 expression increased 2.9-fold in a carbapenem-resistant isolate. Rapid development of high-level carbapenem resistance in initially carbapenem-susceptible OXA-232-producing R. ornithinolytica under selective pressure from carbapenem therapy highlights the diagnostic challenges in detecting Enterobacteriaceae strains producing this inefficient carbapenemase.


2021 ◽  
Vol 65 (5) ◽  
Author(s):  
Yu-Ping Hong ◽  
Ying-Tsong Chen ◽  
You-Wun Wang ◽  
Bo-Han Chen ◽  
Ru-Hsiou Teng ◽  
...  

ABSTRACT We identified an erm42-carrying integrative and conjugative element, ICE_erm42, in 26.4% of multidrug-resistant Salmonella enterica serovar Albany isolates recovered from cases of human salmonellosis between 2014 and 2019 in Taiwan. ICE_erm42-carrying strains displayed high-level resistance to azithromycin, and the element could move into the phylogenetically distant species Vibrio cholerae via conjugation.


2016 ◽  
Vol 82 (23) ◽  
pp. 6810-6818 ◽  
Author(s):  
Thanavit Jirapanjawat ◽  
Blair Ney ◽  
Matthew C. Taylor ◽  
Andrew C. Warden ◽  
Shahana Afroze ◽  
...  

ABSTRACTA defining feature of mycobacterial redox metabolism is the use of an unusual deazaflavin cofactor, F420. This cofactor enhances the persistence of environmental and pathogenic mycobacteria, including after antimicrobial treatment, although the molecular basis for this remains to be understood. In this work, we explored our hypothesis that F420enhances persistence by serving as a cofactor in antimicrobial-detoxifying enzymes. To test this, we performed a series of phenotypic, biochemical, and analytical chemistry studies in relation to the model soil bacteriumMycobacterium smegmatis. Mutant strains unable to synthesize or reduce F420were found to be more susceptible to a wide range of antibiotic and xenobiotic compounds. Compounds from three classes of antimicrobial compounds traditionally resisted by mycobacteria inhibited the growth of F420mutant strains at subnanomolar concentrations, namely, furanocoumarins (e.g., methoxsalen), arylmethanes (e.g., malachite green), and quinone analogues (e.g., menadione). We demonstrated that promiscuous F420H2-dependent reductases directly reduce these compounds by a mechanism consistent with hydride transfer. Moreover,M. smegmatisstrains unable to make F420H2lost the capacity to reduce and detoxify representatives of the furanocoumarin and arylmethane compound classes in whole-cell assays. In contrast, mutant strains were only slightly more susceptible to clinical antimycobacterials, and this appeared to be due to indirect effects of F420loss of function (e.g., redox imbalance) rather than loss of a detoxification system. Together, these data show that F420enhances antimicrobial resistance in mycobacteria and suggest that one function of the F420H2-dependent reductases is to broaden the range of natural products that mycobacteria and possibly other environmental actinobacteria can reductively detoxify.IMPORTANCEThis study reveals that a unique microbial cofactor, F420, is critical for antimicrobial resistance in the environmental actinobacteriumMycobacterium smegmatis. We show that a superfamily of redox enzymes, the F420H2-dependent reductases, can reduce diverse antimicrobialsin vitroandin vivo.M. smegmatisstrains unable to make or reduce F420become sensitive to inhibition by these antimicrobial compounds. This suggests that mycobacteria have harnessed the unique properties of F420to reduce structurally diverse antimicrobials as part of the antibiotic arms race. The F420H2-dependent reductases that facilitate this process represent a new class of antimicrobial-detoxifying enzymes with potential applications in bioremediation and biocatalysis.


2019 ◽  
Vol 63 (5) ◽  
Author(s):  
Jun Li ◽  
Haihong Hao ◽  
Menghong Dai ◽  
Heying Zhang ◽  
Jianan Ning ◽  
...  

ABSTRACT This study aimed to investigate the genetic characteristics, antibiotic resistance patterns, and novel mechanisms involved in fluoroquinolone (FQ) resistance in commensal Escherichia coli isolates. The E. coli isolates were recovered from a previous clinical study and subjected to antimicrobial susceptibility testing and molecular typing. Known mechanisms of FQ resistance (target site mutations, plasmid-mediated quinolone resistance [PMQR] genes, relative expression levels of efflux pumps and porins) were detected using DNA sequencing of PCR products and real-time quantitative PCR. Whole-genome shotgun sequencing was performed on 11 representative strains to screen for single nucleotide polymorphisms (SNPs). The function of a key SNP (A1541G) was investigated by site-directed mutagenesis and allelic exchange. The results showed that long-term enrofloxacin treatment selected multidrug-resistant (MDR) E. coli isolates in the chicken gut and that these E. coli isolates had diverse genetic backgrounds. Multiple genetic alterations, including double mutations on GyrA (S83L and D87N), a single mutation on ParC (S80I) and ParE (S458E), activation of efflux pumps, and the presence of the QnrS1 protein, contributed to the high-level FQ resistance (enrofloxacin MIC [MICENR] ≥ 128 μg/ml), while the relatively low-level FQ resistance (MICENR = 8 or 16 μg/ml) was commonly mediated by decreased expression of the porin OmpF, besides enhancement of the efflux pumps. No significant relationship was observed between resistance mechanisms and virulence genes. Introduction of the A1541G mutation on aegA was able to increase FQ susceptibility by 2-fold. This study contributes to a better understanding of the development of MDR and the differences underlying the mechanisms of high-level and low-level FQ resistance in E. coli.


2019 ◽  
Vol 63 (8) ◽  
Author(s):  
Nabila Ismail ◽  
Nazir A. Ismail ◽  
Shaheed V. Omar ◽  
Remco P. H. Peters

ABSTRACT Bedaquiline resistance within Mycobacterium tuberculosis may arise through efflux-based (rv0678) or target-based (atpE) pathway mutations. M. tuberculosis mutant populations from each of five sequential steps in a passaging approach, using a pyrazinamide-resistant ATCC strain, were subjected to MIC determinations and whole-genome sequencing. Exposure to increasing bedaquiline concentrations resulted in increasing phenotypic resistance (up to >2 μg/ml) through MIC determination on solid medium (Middlebrook 7H10). rv0678 mutations were dynamic, while atpE mutations were fixed, once occurring. We present the following hypothesis for in vitro emergence of bedaquiline resistance: rv0678 mutations may be the first transient step in low-level resistance acquisition, followed by high-level resistance due to fixed atpE mutations.


2011 ◽  
Vol 55 (12) ◽  
pp. 5696-5702 ◽  
Author(s):  
Nicholas G. Brown ◽  
Lori B. Horton ◽  
Wanzhi Huang ◽  
Sompong Vongpunsawad ◽  
Timothy Palzkill

ABSTRACTMetallo-β-lactamases, such as IMP-1, are a major global health threat, as they provide for bacterial resistance to a wide range of β-lactam antibiotics, including carbapenems. Understanding the molecular details of the enzymatic process and the sequence requirements for function are essential aids in overcoming β-lactamase-mediated resistance. An asparagine residue is conserved at position 233 in approximately 67% of all metallo-β-lactamases. Despite its conservation, the molecular basis of Asn233 function is poorly understood and remains controversial. It has previously been shown that mutations at this site exhibit context-dependent sequence requirements in that the importance of a given amino acid depends on the antibiotic being tested. To provide a more thorough examination as to the function and sequence requirements at this position, a collection of IMP-1 mutants encoding each of the 19 possible amino acid substitutions was generated. The resistance levels toward four β-lactam antibiotics were measured forEscherichia colicontaining each of these mutants. The sequence requirements at position 233 for wild-type levels of resistance toward two cephalosporins were the most relaxed, while there were more stringent sequence requirements for resistance to ampicillin or imipenem. Enzyme kinetic analysis and determinations of steady-state protein levels indicated that the effects of the substitutions on resistance are due to changes in the kinetic parameters of the enzyme. Taken together, the results indicate that substitutions at position 233 significantly alter the kinetic parameters of the enzyme, but most substituted enzymes are able to provide for a high level of resistance to a broad range of β-lactams.


2013 ◽  
Vol 81 (11) ◽  
pp. 4299-4310 ◽  
Author(s):  
Pierre-Joseph Royer ◽  
Andrew J. Rogers ◽  
Karl G. Wooldridge ◽  
Patrick Tighe ◽  
Jafar Mahdavi ◽  
...  

ABSTRACTWe have investigated the response of primary human meningothelial cells toNeisseria meningitidis. Through a transcriptome analysis, we provide a comprehensive examination of the response of meningothelial cells to bacterial infection. A wide range of chemokines are elicited which act to attract and activate the main players of innate and adaptive immunity. We showed that meningothelial cells expressed a high level of Toll-like receptor 4 (TLR4), and, using a gene silencing strategy, we demonstrated the contribution of this pathogen recognition receptor in meningothelial cell activation. Secretion of interleukin-6 (IL-6), CXCL10, and CCL5 was almost exclusively TLR4 dependent and relied on MyD88 and TRIF adaptor cooperation. In contrast, IL-8 induction was independent of the presence of TLR4, MyD88, and TRIF. Transcription factors NF-κB p65, p38 mitogen-activated protein kinase (MAPK), Jun N-terminal protein kinase (JNK1), IRF3, and IRF7 were activated after contact with bacteria. Interestingly, the protein kinase IRAK4 was found to play a minor role in the meningothelial cell response toNeisseriainfection. Our work highlights the role of meningothelial cells in the development of an immune response and inflammation in the central nervous system (CNS) in response to meningococcal infection. It also sheds light on the complexity of intracellular signaling after TLR triggering.


Sign in / Sign up

Export Citation Format

Share Document