scholarly journals Heritable Gut Microbiome Associated with Salmonella enterica Serovar Pullorum Infection in Chickens

mSystems ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jinmei Ding ◽  
Hao Zhou ◽  
Lingxiao Luo ◽  
Lu Xiao ◽  
Kaixuan Yang ◽  
...  

ABSTRACT Pullorum disease is one of the most common diarrhea-related diseases caused by Salmonella enterica subspecies enterica serovar Gallinarum biovar Pullorum (S. Pullorum); it negatively affects the poultry industry. However, limited studies have explored the association between the gut microbiota and S. Pullorum infection in chickens. In the present study, we performed a microbiome comparison and a microbiome genome-wide association study (mGWAS) to investigate the association among the host genetics, the gut microbiota, and pullorum disease in chickens. We found that S. Pullorum infection in chickens could alter the abundance of 39 bacterial genera (P < 0.05). The altered structure and composition of the gut microbiota were also detected in the offspring. mGWAS results revealed host genetic variants to be prominently associated with gut microbial diversity and individual microbes. The pathogens Pelomonas and Brevundimonas, which had a high abundance in positive parent chickens and their offspring, were significantly associated with several genetic mutations in immunity-related genes, such as TGIF1, TTLL12, and CCR7. This finding explained why Pelomonas and Brevundimonas were heritable in S. Pullorum-infected chickens. The heritable gut microbes and identified genetic variants could provide references for the selection of resistant chickens and the elimination of pullorum disease. IMPORTANCE The present study investigated the association among the host genome, the gut microbiome, and S. Pullorum infection in chickens. The results suggested that the gut microbial structure is altered in S. Pullorum-infected chickens. The diversity and abundance of the gut microbiota remarkably differed between the offspring coming from S. Pullorum-positive and S. Pullorum-negative chickens. Heritable gut microbiota were detected in the offspring. Moreover, host genetic variants were associated with microbial diversity and individual gut microbes. The pathogens Pelomonas and Brevundimonas, which exhibited a high heritability in S. Pullorum-positive parents and their offspring, were associated with several genetic mutations in immunity-related genes.

2017 ◽  
Vol 84 (5) ◽  
Author(s):  
M. Andrea Azcarate-Peril ◽  
Natasha Butz ◽  
Maria Belen Cadenas ◽  
Matthew Koci ◽  
Anne Ballou ◽  
...  

ABSTRACT Salmonella is estimated to cause one million foodborne illnesses in the United States every year. Salmonella -contaminated poultry products are one of the major sources of salmonellosis. Given the critical role of the gut microbiota in Salmonella transmission, a manipulation of the chicken intestinal microenvironment could prevent animal colonization by the pathogen. In Salmonella , the global regulator gene fnr ( f umarate n itrate r eduction) regulates anaerobic metabolism and is essential for adapting to the gut environment. This study tested the hypothesis that an attenuated Fnr mutant of Salmonella enterica serovar Typhimurium (attST) or prebiotic galacto-oligosaccharides (GOS) could improve resistance to wild-type Salmonella via modifications to the structure of the chicken gut microbiome. Intestinal samples from a total of 273 animals were collected weekly for 9 weeks to evaluate the impact of attST or prebiotic supplementation on microbial species of the cecum, duodenum, jejunum, and ileum. We next analyzed changes to the gut microbiome induced by challenging the animals with a wild-type Salmonella serovar 4,[5],12:r:− (Nal r ) strain and determined the clearance rate of the virulent strain in the treated and control groups. Both GOS and the attenuated Salmonella strain modified the gut microbiome but elicited alterations of different taxonomic groups. The attST produced significant increases of Alistipes and undefined Lactobacillus , while GOS increased Christensenellaceae and Lactobacillus reuteri . The microbiome structural changes induced by both treatments resulted in a faster clearance after a Salmonella challenge. IMPORTANCE With an average annual incidence of 13.1 cases/100,000 individuals, salmonellosis has been deemed a nationally notifiable condition in the United States by the Centers for Disease Control and Prevention (CDC). Earlier studies demonstrated that Salmonella is transmitted by a subset of animals (supershedders). The supershedder phenotype can be induced by antibiotics, ascertaining an essential role for the gut microbiota in Salmonella transmission. Consequently, modulation of the gut microbiota and modification of the intestinal microenvironment could assist in preventing animal colonization by the pathogen. Our study demonstrated that a manipulation of the chicken gut microbiota by the administration of an attenuated Salmonella strain or prebiotic galacto-oligosaccharides (GOS) can promote resistance to Salmonella colonization via increases of beneficial microorganisms that translate into a less hospitable gut microenvironment.


Author(s):  
Ang Li ◽  
Tiantian Li ◽  
Xinxin Gao ◽  
Hang Yan ◽  
Jingfeng Chen ◽  
...  

Thyroid nodules are found in nearly half of the adult population. Accumulating evidence suggests that the gut microbiota plays an important role in thyroid metabolism, yet the association between gut microbiota capacity, thyroid nodules, and thyroid function has not been studied comprehensively. We performed a gut microbiome genome-wide association study in 196 patients with thyroid nodules and 283 controls by using whole-genome shotgun sequencing. We found that participants with high-grade thyroid nodules have decreased number of gut microbial species and gene families compared with those with lower grade nodules and controls. There are also significant alterations in the overall microbial composition in participants with high-grade thyroid nodules. The gut microbiome in participants with high-grade thyroid nodules is characterized by greater amino acid degradation and lower butyrate production. The relative abundances of multiple butyrate producing microbes are reduced in patients with high-grade thyroid nodules and the relative abundances of L-histidine metabolism pathways are associated with thyrotropin-releasing hormone. Our study describes the gut microbiome characteristics in thyroid nodules and a gut-thyroid link and highlight specific gut microbiota as a potential therapeutic target to regulate thyroid metabolism.


mSystems ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Supriya D. Mehta ◽  
Drew R. Nannini ◽  
Fredrick Otieno ◽  
Stefan J. Green ◽  
Walter Agingu ◽  
...  

ABSTRACT Bacterial vaginosis (BV) affects 20% of women worldwide and is associated with adverse reproductive health outcomes and increased risk for HIV. Typically, BV represents a shift in the vaginal microbiome from one that is dominated by Lactobacillus to one that is diverse. Persistent racial differences in BV and diverse vaginal microbiome composition overlap with racial disparities in risks for HIV and sexually transmitted infection, especially among women of African descent. Risk factors for BV and nonoptimal vaginal microbiome include sexual practices, yet racial differences persist when adjusted for behavioral factors, suggesting a host genetic component. Here, we perform a genome-wide association study on vaginal microbiome traits in Kenyan women. Linear regression and logistic regression were performed, adjusting for age and principal components of genetic ancestry, to evaluate the association between Lactobacillus crispatus, Lactobacillus iners, Gardnerella vaginalis, Shannon diversity index, and community state type (CST) with host genetic single nucleotide polymorphisms (SNPs). We identified novel genomic loci associated with the vaginal microbiome traits, though no SNP reached genome-wide significance. During pathway enrichment analysis, Toll-like receptors (TLRs), cytokine production, and other components of innate immune response were associated with L. crispatus, L. iners, and CST. Multiple previously reported genomic loci were replicated, including IL-8 (Shannon, CST), TIRAP (L. iners, Shannon), TLR2 (Shannon, CST), MBL2 (L. iners, G. vaginalis, CST), and MYD88 (L. iners, Shannon). These genetic associations suggest a role for the innate immune system and cell signaling in vaginal microbiome composition and susceptibility to nonoptimal vaginal microbiome. IMPORTANCE Globally, bacterial vaginosis (BV) is a common condition in women. BV is associated with poorer reproductive health outcomes and HIV risk. Typically, BV represents a shift in the vaginal microbiome from one that is dominated by Lactobacillus to one that is diverse. Despite many women having similar exposures, the prevalence of BV and nonoptimal vaginal microbiome is increased for women of African descent, suggesting a possible role for host genetics. We conducted a genome-wide association study of important vaginal microbiome traits in Kenyan women. We identified novel genetic loci and biological pathways related to mucosal immunity, cell signaling, and infection that were associated with vaginal microbiome traits; we replicated previously reported loci associated with mucosal immune response. These results provide insight into potential host genetic influences on vaginal microbiome composition and can guide larger longitudinal studies, with genetic and functional comparison across microbiome sites within individuals and across populations.


2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Timothy J. Henrich ◽  
Paul J. McLaren ◽  
Suhas S. P. Rao ◽  
Nina H. Lin ◽  
Emily Hanhauser ◽  
...  

Abstract Objectives.  We conducted a genome-wide association study to explore whether common host genetic variants (&gt;5% frequency) were associated with presence of virus able to use CXCR4 for entry. Methods.  Phenotypic determination of human immunodeficiency virus (HIV)-1 coreceptor usage was performed on pretreatment plasma HIV-1 samples from treatment-naive participants in AIDS Clinical Trials Group A5095, a study of initial antiretroviral regimens. Associations between genome-wide single-nucleotide polymorphisms (SNPs), CCR5 Δ32 genotype, and human leukocyte antigen (HLA) class I alleles and viral coreceptor usage were explored. Results.  Viral phenotypes were obtained from 593 patients with available genome-wide SNP data. Forty-four percent of subjects had virus capable of using CXCR4 for entry as determined by phenotyping. Overall, no associations, including those between polymorphisms in genes encoding viral coreceptors and their promoter regions or in HLA genes previously associated with HIV-1 disease progression, passed the statistical threshold for genome-wide significance (P &lt; 5.0 × 10−8) in any comparison. However, the presence of viruses able to use CXCR4 for entry was marginally associated with the CCR5 Δ32 genotype in the nongenome-wide analysis. Conclusions.  No human genetic variants were significantly associated with virus able to use CXCR4 for entry at the genome-wide level. Although the sample size had limited power to definitively exclude genetic associations, these results suggest that host genetic factors, including those that influence coreceptor expression or the immune pressures leading to viral envelope diversity, are either rare or have only modest effects in determining HIV-1 coreceptor usage.


2020 ◽  
Vol 14 ◽  
Author(s):  
Julie Jeon ◽  
Jeferson Lourenco ◽  
Erin E. Kaiser ◽  
Elizabeth S. Waters ◽  
Kelly M. Scheulin ◽  
...  

Stroke is a major cause of death and long-term disability affecting seven million adults in the United States each year. Recently, it has been demonstrated that neurological diseases, associated pathology, and susceptibility changes correlated with changes in the gut microbiota. However, changes in the microbial community in stroke has not been well characterized. The acute stage of stroke is a critical period for assessing injury severity, therapeutic intervention, and clinical prognosis. We investigated the changes in the gut microbiota composition and diversity using a middle cerebral artery (MCA) occlusion ischemic stroke pig model. Ischemic stroke was induced by cauterization of the MCA in pigs. Blood samples were collected prestroke and 4 h, 12 h, 1 day, and 5 days poststroke to evaluate circulating proinflammatory cytokines. Fecal samples were collected prestroke and 1, 3, and 5 days poststroke to assess gut microbiome changes. Results showed elevated systemic inflammation with increased plasma levels of tumor necrosis factor alpha at 4 h and interleukin-6 at 12 h poststroke, relative to prestroke. Microbial diversity and evenness were reduced at 1 day poststroke compared to prestroke. Microbial diversity at 3 days poststroke was negatively correlated with lesion volume. Moreover, beta-diversity analysis revealed trending overall differences over time, with the most significant changes in microbial patterns observed between prestroke and 3 days poststroke. Abundance of the Proteobacteria was significantly increased, while Firmicutes decreased at 3 days poststroke, compared to prestroke populations. Abundance of the lactic acid bacteria Lactobacillus was reduced at 3 days poststroke. By day 5, the microbial pattern returned to similar values as prestroke, suggesting the plasticity of gut microbiome in an acute period of stroke in a pig model. These findings provide a basis for characterizing gut microbial changes during the acute stage of stroke, which can be used to assess stroke pathology and the potential development of therapeutic targets.


2011 ◽  
Vol 78 (1) ◽  
pp. 204-210 ◽  
Author(s):  
Zakee L. Sabree ◽  
Charlie Ye Huang ◽  
Gaku Arakawa ◽  
Gaku Tokuda ◽  
Nathan Lo ◽  
...  

ABSTRACTBeneficial microbial associations with insects are common and are classified as either one or a few intracellular species that are vertically transmitted and reside intracellularly within specialized organs or as microbial assemblages in the gut. Cockroaches and termites maintain at least one if not both beneficial associations.Blattabacteriumis a flavobacterial endosymbiont of nearly all cockroaches and the termiteMastotermes darwiniensisand can use nitrogenous wastes in essential amino acid and vitamin biosynthesis. Key changes during the evolutionary divergence of termites from cockroaches are loss ofBlattabacterium, diet shift to wood, acquisition of a specialized hindgut microbiota, and establishment of advanced social behavior. Termite gut microbes collaborate to fix nitrogen, degrade lignocellulose, and produce nutrients, and the absence ofBlattabacteriumin nearly all termites suggests that its nutrient-provisioning role has been replaced by gut microbes.M. darwiniensisis a basal, extant termite that solely retainsBlattabacterium, which would show evidence of relaxed selection if it is being supplanted by the gut microbiome. This termite-associatedBlattabacteriumgenome is ∼8% smaller than cockroach-associatedBlattabacteriumgenomes and lacks genes underlying vitamin and essential amino acid biosynthesis. Furthermore, theM. darwiniensisgut microbiome membership is more consistent between individuals and includes specialized termite gut-associated bacteria, unlike the more variable membership of cockroach gut microbiomes. TheM. darwiniensis Blattabacteriumgenome may reflect relaxed selection for some of its encoded functions, and the loss of this endosymbiont in all remaining termite genera may result from its replacement by a functionally complementary gut microbiota.


2019 ◽  
Author(s):  
Fengzhe Xu ◽  
Yuanqing Fu ◽  
Ting-yu Sun ◽  
Zengliang Jiang ◽  
Zelei Miao ◽  
...  

AbstractThere is increasing interest about the interplay between host genetics and gut microbiome on human complex diseases, with prior evidence mainly derived from animal models. In addition, the shared and distinct microbiome features among human complex diseases remain largely unclear. We performed a microbiome genome-wide association study to identify host genetic variants associated with gut microbiome in a Chinese population with 1475 participants. We then conducted bi-directional Mendelian randomization analyses to examine the potential causal associations between gut microbiome and human complex diseases. We found that Saccharibacteria (also known as TM7 phylum) could potentially improve renal function by affecting renal function biomarkers (i.e., creatinine and estimated glomerular filtration rate). In contrast, atrial fibrillation, chronic kidney disease and prostate cancer, as predicted by the host genetics, had potential causal effect on gut microbiome. Further disease-microbiome feature analysis suggested that gut microbiome features revealed novel relationship among human complex diseases. These results suggest that different human complex diseases share common and distinct gut microbiome features, which may help re-shape our understanding about the disease etiology in humans.


2020 ◽  
Author(s):  
Fengzhe Xu ◽  
Yuanqing Fu ◽  
Tingyu Sun ◽  
Zengliang Jiang ◽  
Zelei Miao ◽  
...  

Abstract Background Interest in the interplay between host genetics and the gut microbiome in complex human diseases is increasing, with prior evidence mainly being derived from animal models. In addition, the shared and distinct microbiome features among complex human diseases remain largely unclear.Results This analysis was based on a Chinese population with 1,475 participants. We estimated the SNP-based heritability, which suggested that Desulfovibrionaceae and Odoribacter had significant heritability estimates (0.456 and 0.476, respectively). We performed a microbiome genome-wide association study to identify host genetic variants associated with the gut microbiome. We then conducted bidirectional Mendelian randomization analyses to examine the potential causal associations between the gut microbiome and complex human diseases. We found that Saccharibacteria could potentially decrease the concentration of serum creatinine and increase the estimated glomerular filtration rate. On the other hand, atrial fibrillation, chronic kidney disease and prostate cancer, as predicted by host genetics, had potential causal effects on the abundance of some specific gut microbiota. For example, atrial fibrillation increased the abundance of Burkholderiales and Alcaligenaceae and decreased the abundance of Lachnobacterium, Bacteroides coprophilus, Barnesiellaceae, undefined genus in family Veillonellaceae and Mitsuokella. Further disease-microbiome feature analysis suggested that systemic lupus erythematosus and chronic myeloid leukaemia shared common gut microbiome features.Conclusions These results suggest that different complex human diseases share common and distinct gut microbiome features, which may help reshape our understanding of disease aetiology in humans.


Genes ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 381 ◽  
Author(s):  
Magdalena Ruiz-Rodríguez ◽  
Manuel Martín-Vivaldi ◽  
Manuel Martínez-Bueno ◽  
Juan José Soler

Diet and host genetic or evolutionary history are considered the two main factors determining gut microbiota of animals, although studies are scarce in natural populations. The system of great spotted cuckoos (Clamator glandarius) parasitizing magpies (Pica pica) is ideal to study both effects since magpie adults feed cuckoo and magpie nestlings with the same diet and, consequently, differences in gut microbiota of nestlings of these two species will mainly reflect the importance of genetic components. Moreover, the diet of adults and of nestling cuckoos drastically differ from each other and, thus, differences and similarities in their microbiotas would respectively reflect the effect of environmental and genetic factors. We used next-generation sequencing technologies to analyze the gut microbiota of cuckoo adults and nestlings and of magpie nestlings. The highest α-diversity estimates appeared in nestling cuckoos and the lowest in nestling magpies. Moreover, despite the greatest differences in the microbiome composition of magpies and cuckoos of both ages, cuckoo nestlings harbored a mixture of the Operational Taxonomic Units (OTUs) present in adult cuckoos and nestling magpies. We identified the bacterial taxa responsible for such results. These results suggest important phylogenetic components determining gut microbiome of nestlings, and that diet might be responsible for similarities between gut microbiome of cuckoo and magpie nestlings that allow cuckoos to digest food provided by magpie adults.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Tzu-Wen Cross ◽  
Evan Hutchison ◽  
Jacob Coulthurst ◽  
Federico Rey

Abstract Objectives Dietary fiber consumption improves cardiometabolic health, partly by enhancing microbial diversity and increasing production of butyrate in the distal gut. However, it is unclear whether the benefits associated with different types of fiber vary based on the gut microbiota composition. We surveyed nine different human gut microbial communities by characterizing them in germ-free mice and selected two communities based on their butyrate-producing capacity (“B”) and diversity (“D”) (i.e., high- vs. low-BD communities). Our objective was to assess the role of high- vs. low-BD communities on the metabolic effects elicited by the consumption of various dietary fibers. Methods We formulated seven diets with different sources of dietary fiber (10% wt/wt): i) resistant starch type 2 (RS2); ii) RS4; iii) inulin; iv) short-chain fructooligosaccharides (scFOS); v) pectin, vi) assorted fiber (a combination of the 5 fermentable fibers), and vii) cellulose (a non-fermentable control). Germ-free C57BL/6 male mice were colonized with either the high- or low-BD communities and fed the assorted fiber diet for 2 weeks to reach stability of microbial engraftment. Mice were then switched to one of the 7 diets for 4 weeks (n = 7–10/group; 117 mice total). We quantified cecal level of short-chain fatty acids and assessed the gut microbiota composition using 16S rRNA gene-based sequencing. Results Mice colonized with the high-BD community have lower body weight and fat mass compared to the low-BD community when fermentable-fiber sources RS2, inulin, or assorted fiber were present in the diet. Body weight did not differ between the two communities when mice were fed RS4, scFOS, pectin, or cellulose diets. Lower body weight and fat mass were associated with greater cecal butyrate concentrations and microbial diversity. Conclusions The efficacy of dietary fiber interventions on metabolic health varies based on the gut microbiota composition. Overall, our results suggest that dietary fiber supplementations need to be matched with the metabolic potential of the gut microbiome. Funding Sources Fondation Leducq, USDA, and NIH.


Sign in / Sign up

Export Citation Format

Share Document