scholarly journals Supplemental Material: Construction of the Lesser Himalayan–Subhimalayan thrust belt: The primary driver of thickening, exhumation, and high elevations in the Himalayan orogen since the middle Miocene

Author(s):  
Sean P. Long ◽  
Delores M. Robinson

Supplemental figures and tables that provide supporting data for the compiled cross sections and the measured parameters, as well as text that summarizes the tectonostratigraphic units on each cross section.<br>

2021 ◽  
Author(s):  
Sean P. Long ◽  
Delores M. Robinson

Supplemental figures and tables that provide supporting data for the compiled cross sections and the measured parameters, as well as text that summarizes the tectonostratigraphic units on each cross section.<br>


Geology ◽  
2021 ◽  
Author(s):  
Sean P. Long ◽  
Delores M. Robinson

Documenting the structural evolution of the Himalayan orogen is fundamental for understanding the dynamics of collisional orogenesis. We argue that the importance of deformation in the frontal, Lesser Himalayan–Subhimalayan (LH-SH) portion of the Himalayan thrust belt for driving crustal thickening over the past ~15–13 m.y. has long been overlooked. To quantify its contribution to thickening, we measured parameters from 22 published cross sections that span the length of the orogen. The mean structural uplift accomplished by the LH-SH thrust belt increases from 10–15 km in the eastern half of the orogen to 15–23 km in the western half. An antiformal culmination constructed by LH duplexing is observed across the orogen and increases in structural height (to as much as 15–20 km) and north-south width moving westward. Construction of the culmination was the primary mechanism for building and maintaining wedge taper. The westward scaling of culmination size is accompanied by doubling and tripling of LH-SH shortening and accretion magnitude, respectively; when combined with a consistent orogen-wide modern taper angle (11° ± 2°), this indicates that duplexing facilitated the growth of an overall larger orogenic wedge moving westward. Following the initial southward propagation of deformation into LH rocks at ca. 15–13 Ma, the Himalayan orogenic wedge has been characterized by stacking of multiple thin, smalldisplacement thrust sheets to develop a high-taper orogenic wedge. Thus, LH-SH deformation has had a profound effect on driving thickening, exhumation, and the attainment of high elevations since the middle Miocene.


2021 ◽  
Author(s):  
Nadine McQuarrie ◽  
Mary Braza

&lt;div&gt; &lt;p&gt;One of the first order questions regarding a cross-section representation through a fold-thrust belt (FTB) is usually &amp;#8220;how unique is this geometrical interpretation of the subsurface?&amp;#8221;&amp;#160; The proposed geometry influences perceptions of inherited structures, decollement horizons, and both rheological and kinematic behavior.&amp;#160; Balanced cross sections were developed as a tool to produce more accurate and thus more predictive geological cross sections.&amp;#160; While balanced cross sections provide models of subsurface geometry that can reproduce the mapped surface geology, they are non-unique, opening the possibility that different geometries and kinematics may be able to satisfy the same set of observations. The most non-unique aspects of cross sections are: (1) the geometry of structures that is not seen at the surface, and (2) the sequence of thrust faulting. &amp;#160;We posit that integrating sequentially restored cross sections with thermokinematic models that calculate the resulting subsurface thermal field and predicted cooling ages of rocks at the surface provides a valuable means to assess the viability of proposed geometry and kinematics. &amp;#160;Mineral cooling ages in compressional settings are the outcome of surface uplift and the resulting focused erosion.&amp;#160; As such they are most sensitive to the vertical component of the kinematic field imparted by ramps and surface breaking faults in sequential reconstructions of FTB. &amp;#160;Because balanced cross sections require that the lengths and locations of hanging-wall and footwall ramps match, they provide a template of the ways in which the location and magnitude of ramps in the basal d&amp;#233;collement have evolved with time. &amp;#160;Arunachal Pradesh in the eastern Himalayas is an ideal place to look at the sensitivity of cooling ages to different cross section geometries and kinematic models. Recent studies from this portion of the Himalayan FTB include both a suite of different cross section geometries and a robust bedrock thermochronology dataset. The multiple published cross-sections differ in the details of geometry, implied amounts of shortening, kinematic history, and thus exhumation pathways. Published cooling ages data show older ages (6-10 Ma AFT, 12-14 Ma ZFT) in the frontal portions of the FTB and significantly younger ages (2-5 Ma AFT, 6-8 Ma ZFT) in the hinterland. These ages are best reproduced with kinematic sequence that involves early forward propagation of the FTB from 14-10 Ma.&amp;#160; The early propagation combined with young hinterland cooling ages require several periods of out-of-sequence faulting. Out-of-sequence faults are concentrated in two windows of time (10-8 Ma and 7-5 Ma) that show systematic northward reactivation of faults.&amp;#160; Quantitative integration of cross section geometry, kinematics and cooling ages require notably more complicated kinematic and exhumation pathways than are typically assumed with a simple in-sequence model of cross section deformation.&amp;#160; While also non-unique, the updated cross section geometry and kinematics highlight components of geometry, deformation and exhumation that must be included in any valid cross section model for this portion of the eastern Himalaya.&lt;/p&gt; &lt;/div&gt;


Author(s):  
J. P. Colson ◽  
D. H. Reneker

Polyoxymethylene (POM) crystals grow inside trioxane crystals which have been irradiated and heated to a temperature slightly below their melting point. Figure 1 shows a low magnification electron micrograph of a group of such POM crystals. Detailed examination at higher magnification showed that three distinct types of POM crystals grew in a typical sample. The three types of POM crystals were distinguished by the direction that the polymer chain axis in each crystal made with respect to the threefold axis of the trioxane crystal. These polyoxymethylene crystals were described previously.At low magnifications the three types of polymer crystals appeared as slender rods. One type had a hexagonal cross section and the other two types had rectangular cross sections, that is, they were ribbonlike.


Author(s):  
R.D. Leapman ◽  
P. Rez ◽  
D.F. Mayers

Microanalysis by EELS has been developing rapidly and though the general form of the spectrum is now understood there is a need to put the technique on a more quantitative basis (1,2). Certain aspects important for microanalysis include: (i) accurate determination of the partial cross sections, σx(α,ΔE) for core excitation when scattering lies inside collection angle a and energy range ΔE above the edge, (ii) behavior of the background intensity due to excitation of less strongly bound electrons, necessary for extrapolation beneath the signal of interest, (iii) departures from the simple hydrogenic K-edge seen in L and M losses, effecting σx and complicating microanalysis. Such problems might be approached empirically but here we describe how computation can elucidate the spectrum shape.The inelastic cross section differential with respect to energy transfer E and momentum transfer q for electrons of energy E0 and velocity v can be written as


Author(s):  
Xudong Weng ◽  
Peter Rez

In electron energy loss spectroscopy, quantitative chemical microanalysis is performed by comparison of the intensity under a specific inner shell edge with the corresponding partial cross section. There are two commonly used models for calculations of atomic partial cross sections, the hydrogenic model and the Hartree-Slater model. Partial cross sections could also be measured from standards of known compositions. These partial cross sections are complicated by variations in the edge shapes, such as the near edge structure (ELNES) and extended fine structures (ELEXFS). The role of these solid state effects in the partial cross sections, and the transferability of the partial cross sections from material to material, has yet to be fully explored. In this work, we consider the oxygen K edge in several oxides as oxygen is present in many materials. Since the energy window of interest is in the range of 20-100 eV, we limit ourselves to the near edge structures.


Author(s):  
P.A. Crozier

Absolute inelastic scattering cross sections or mean free paths are often used in EELS analysis for determining elemental concentrations and specimen thickness. In most instances, theoretical values must be used because there have been few attempts to determine experimental scattering cross sections from solids under the conditions of interest to electron microscopist. In addition to providing data for spectral quantitation, absolute cross section measurements yields useful information on many of the approximations which are frequently involved in EELS analysis procedures. In this paper, experimental cross sections are presented for some inner-shell edges of Al, Cu, Ag and Au.Uniform thin films of the previously mentioned materials were prepared by vacuum evaporation onto microscope cover slips. The cover slips were weighed before and after evaporation to determine the mass thickness of the films. The estimated error in this method of determining mass thickness was ±7 x 107g/cm2. The films were floated off in water and mounted on Cu grids.


Author(s):  
Stanley J. Klepeis ◽  
J.P. Benedict ◽  
R.M Anderson

The ability to prepare a cross-section of a specific semiconductor structure for both SEM and TEM analysis is vital in characterizing the smaller, more complex devices that are now being designed and manufactured. In the past, a unique sample was prepared for either SEM or TEM analysis of a structure. In choosing to do SEM, valuable and unique information was lost to TEM analysis. An alternative, the SEM examination of thinned TEM samples, was frequently made difficult by topographical artifacts introduced by mechanical polishing and lengthy ion-milling. Thus, the need to produce a TEM sample from a unique,cross-sectioned SEM sample has produced this sample preparation technique.The technique is divided into an SEM and a TEM sample preparation phase. The first four steps in the SEM phase: bulk reduction, cleaning, gluing and trimming produces a reinforced sample with the area of interest in the center of the sample. This sample is then mounted on a special SEM stud. The stud is inserted into an L-shaped holder and this holder is attached to the Klepeis polisher (see figs. 1 and 2). An SEM cross-section of the sample is then prepared by mechanically polishing the sample to the area of interest using the Klepeis polisher. The polished cross-section is cleaned and the SEM stud with the attached sample, is removed from the L-shaped holder. The stud is then inserted into the ion-miller and the sample is briefly milled (less than 2 minutes) on the polished side. The sample on the stud may then be carbon coated and placed in the SEM for analysis.


The work of multilayer glass structures for central and eccentric compression and bending are considered. The substantiation of the chosen research topic is made. The description and features of laminated glass for the structures investigated, their characteristics are presented. The analysis of the results obtained when testing for compression, compression with bending, simple bending of models of columns, beams, samples of laminated glass was made. Overview of the types and nature of destruction of the models are presented, diagrams of material operation are constructed, average values of the resistance of the cross-sections of samples are obtained, the table of destructive loads is generated. The need for development of a set of rules and guidelines for the design of glass structures, including laminated glass, for bearing elements, as well as standards for testing, rules for assessing the strength, stiffness, crack resistance and methods for determining the strength of control samples is emphasized. It is established that the strength properties of glass depend on the type of applied load and vary widely, and significantly lower than the corresponding normative values of the strength of heat-strengthened glass. The effect of the connecting polymeric material and manufacturing technology of laminated glass on the strength of the structure is also shown. The experimental values of the elastic modulus are different in different directions of the cross section and in the direction perpendicular to the glass layers are two times less than along the glass layers.


Author(s):  
Frank Altmann ◽  
Jens Beyersdorfer ◽  
Jan Schischka ◽  
Michael Krause ◽  
German Franz ◽  
...  

Abstract In this paper the new Vion™ Plasma-FIB system, developed by FEI, is evaluated for cross sectioning of Cu filled Through Silicon Via (TSV) interconnects. The aim of the study presented in this paper is to evaluate and optimise different Plasma-FIB (P-FIB) milling strategies in terms of performance and cross section surface quality. The sufficient preservation of microstructures within cross sections is crucial for subsequent Electron Backscatter Diffraction (EBSD) grain structure analyses and a high resolution interface characterisation by TEM.


Sign in / Sign up

Export Citation Format

Share Document