Chemical Composition, Structure, and Electrokinetic Potential of Nickel- and Iron-Containing Vitreous Materials

2021 ◽  
Vol 83 (3) ◽  
pp. 335-342
Author(s):  
A. S. Kuznetsova ◽  
L. E. Ermakova ◽  
T. V. Antropova ◽  
I. N. Anfimova ◽  
A. V. Volkova
2020 ◽  
Vol 236 ◽  
pp. 116000 ◽  
Author(s):  
Biljana M. Pejić ◽  
Ana D. Kramar ◽  
Bratislav M. Obradović ◽  
Milorad M. Kuraica ◽  
Andrijana A. Žekić ◽  
...  

2021 ◽  
Vol 316 ◽  
pp. 1019-1024
Author(s):  
O. A. Ignatova ◽  
A. A. Dyatchina

The paper presents the studies’ results of chemical composition, structure, and physico-mechanical properties of high-calcium ashes from the Kansk-Achinsk coals (2017-2019 selection). It was found that ash has a complex poly-mineral composition and contains hydraulically active minerals and oxides of СаОfr, β-C2S, CA, C3A, C4AF, C2F, CaSO4. According to the content of CaOfr, MgO does not meet standards’ requirements. The uniformity of the volume change is maintained by the composition with 50% of cement. The structure and hardening kinetics of ash and ash-cement stone compositions, obtained from the test of normal density, were analyzed. It was established that the hardening of compositions with ash from the Kansk-Achinsk coals was largely influenced by ash minerals. An equivalent amount of cement in composite binders cannot be replaced. In order to obtain a positive effect, compositions with ash instead cement of no more than 30% and a part of fine aggregate, without exceeding the ratio of ash: cement = 1: 1, should be used.


2016 ◽  
Vol 0 (4(36)) ◽  
pp. 6-27
Author(s):  
М. Б. Галкін ◽  
В. О. Іваниця ◽  
Б. М. Галкін ◽  
Т. О. Філіпова

2021 ◽  
Vol 2144 (1) ◽  
pp. 012004
Author(s):  
P V Panin ◽  
I A Bogachev ◽  
E A Lukina

Abstract Chemical composition, structure, and technological properties have been investigated for metal powder compositions (MPCs) of a new six-component TiAl-based alloy with Gd microadditions: Ti-31.0Al-2.5V-2.5Nb-2.5Cr-0.4Gd, wt.% (Ti-44.5Al-2V-1Nb-2Cr-0.1Gd, at.%). Three MPCs fractions (10–63, 40–100, 80–120 μm) were produced by electrode induction melting and inert gas atomization technique and targeted for the additive synthesis of parts. It is shown that the chemical composition of the MPCs for the main elements corresponds to that of the electrode. In contrast, a 1.5-fold increase of the oxygen content in the MPCs was observed, which is being the result of natural oxidation of powder particles upon air environment due to developed specific surface. It has been determined that the phase composition of the MPCs (γ+α(α2)+β) differs from the equilibrium phase composition of the electrode (γ+α2)+β0/B2) and corresponds to a rapidly quenched metastable state, which indicates high solidification rates in the atomization process, exceeding critical cooling rates of the alloy. The technological properties, specifically the powder flowability, were found to be improved for 40–100 and 80–120 μm fractions, making them applicable for additive synthesis of parts from the studied alloy by selective electron-beam melting method


2020 ◽  
Vol 22 (26) ◽  
pp. 15058-15058
Author(s):  
Natalia Kireeva ◽  
Vladislav S. Pervov

Correction for ‘Materials space of solid-state electrolytes: unraveling chemical composition–structure–ionic conductivity relationships in garnet-type metal oxides using cheminformatics virtual screening approaches’ by Natalia Kireeva et al., Phys. Chem. Chem. Phys., 2017, 19, 20904–20918, DOI: 10.1039/c7cp00518k.


2020 ◽  
Vol 104 (1) ◽  
pp. 572-583
Author(s):  
Jennifer N. Mills ◽  
Norman J. Wagner ◽  
Paramita Mondal

Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 853
Author(s):  
Michael Kroker ◽  
Pavel Souček ◽  
Pavol Matej ◽  
Lukáš Zábranský ◽  
Zsolt Czigány ◽  
...  

Ta–B–C coatings were non-reactively sputter-deposited in an industrial batch coater from a single segmented rotating cylindrical cathode employing a combinatorial approach. The chemical composition, morphology, microstructure, mechanical properties, and fracture resistance of the coatings were investigated. Their mechanical properties were linked to their microstructure and phase composition. Coatings placed stationary in front of the racetrack of the target and those performing a 1-axis rotation around the substrate carousel are compared. Utilization of the substrate rotation has no significant effect on the chemical composition of the coatings deposited at the same position compared to the cathode. Whereas the morphology of coatings with corresponding chemical composition is similar for stationary as well as rotating samples, the rotating coatings exhibit a distinct multilayered structure with a repetition period in the range of nanometers despite utilizing a non-reactive process and a single sputter source. All the coatings are either amorphous, nanocomposite or nanocrystalline depending on their chemical composition. The presence of TaC, TaB, and/or TaB2 phases is identified. The crystallite size is typically less than 5 nm. The highest hardness of the coatings is associated with the presence of larger grains in a nanocomposite structure or formation of polycrystalline coatings. The number, density, and length of cracks observed after high-load indentation is on par with current optimized commercially available protective coatings.


1990 ◽  
Vol 192 ◽  
Author(s):  
L. Magafas ◽  
D. Girginoudi ◽  
N. Georgoulas ◽  
A. Thanailakis

ABSTRACTThe dependence of chemical composition, structure and optoelectronic properties of sputtered a-SiC:H thin films on substrate temperature, Ts, and hydrogen flow rate has been studied. The films are amorphous for the growth conditions used in this work. The chemical composition of the alloys is very little influenced by the Ts, whereas the hydrogen content and the optical absorption coefficient depends strongly on Ts and hydrogen flow rate.


Sign in / Sign up

Export Citation Format

Share Document