scholarly journals HDAC9 deficiency promotes tumor progression by decreasing the CD8+ dendritic cell infiltration of the tumor microenvironment

2020 ◽  
Vol 8 (1) ◽  
pp. e000529 ◽  
Author(s):  
Yongling Ning ◽  
Jun Ding ◽  
Xiao Sun ◽  
Yewen Xie ◽  
Mingming Su ◽  
...  

BackgroundThe tumor microenvironment (TME) contains a variety of immune cells, which play critical roles during the multistep development of tumors. Histone deacetylase 9 (HDAC9) has been reported to have either proinflammatory or anti-inflammatory effects, depending on the immune environment. In this study, we investigated whether HDAC9 in the tumor stroma regulated inflammation and antitumor immunity.MethodsHdac9 knockout mice were generated to analyze the HDAC9-associated inflammation and tumor progression. Immune cells and cytokines in TME or draining lymph nodes were quantified by flow cytometry and quantitative reverse transcription-PCR. The antigen presentation and CD8+ T cell priming by tumor-infiltrating dendritic cells (DCs) were evaluated in vitro and in vivo. HDAC9-associated inflammation was investigated in a mouse model with dextran sulfate sodium–induced colitis. Correlation of HDAC9 with CD8+ expression was assessed in tissue sections from patients with non-small cell lung cancer.ResultsHDAC9 deficiency promoted tumor progression by decreasing the CD8+ DC infiltration of the TME. Compared with wild-type mice, the tumor-infiltrating DCs of Hdac9-/- mice displayed impaired cross-presentation of tumor antigens and cross-priming of CD8+ T cells. Moreover, HDAC9 expression was significantly positively correlated with CD8+ cell counts in human lung cancer stroma samples.ConclusionsHDAC9 deficiency decreased inflammation and promoted tumor progression by decreasing CD8+ DC infiltration of the TME. HDAC9 expression in the tumor stroma may represent a promising biomarker to predict the therapeutic responses of patients receiving CD8+ T cell-dependent immune treatment regimens.

2020 ◽  
Vol 21 (23) ◽  
pp. 8929
Author(s):  
Melanie Kienzl ◽  
Julia Kargl ◽  
Rudolf Schicho

Leukocytes are part of the tumor microenvironment (TME) and are critical determinants of tumor progression. Because of the immunoregulatory properties of cannabinoids, the endocannabinoid system (ECS) may have an important role in shaping the TME. Members of the ECS, an entity that consists of cannabinoid receptors, endocannabinoids and their synthesizing/degrading enzymes, have been associated with both tumor growth and rejection. Immune cells express cannabinoid receptors and produce endocannabinoids, thereby forming an “immune endocannabinoid system”. Although in vitro effects of exogenous cannabinoids on immune cells are well described, the role of the ECS in the TME, and hence in tumor development and immunotherapy, is still elusive. This review/opinion discusses the possibility that the “immune endocannabinoid system” can fundamentally influence tumor progression. The widespread influence of cannabinoids on immune cell functions makes the members of the ECS an interesting target that could support immunotherapy.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3276-3276
Author(s):  
Yen T. M. Nguyen ◽  
Manabu Fujisawa ◽  
Tran B. Nguyen ◽  
Yasuhito Suehara ◽  
Tatsuhiro Sakamoto ◽  
...  

Abstract Introductions: Loss-of-function TET2 mutations are frequent in clonal hematopoiesis in patients with solid cancers as well as that in healthy individuals. It remains to be elucidated whether and how TET2-mutated immune cells affect cancer progression in patients with TET2-mutated clonal hematopoiesis. Here, we assessed activity of Tet2-deficient immune cells using a mouse lung cancer model. Methods: Lewis Lung Carcinoma (LLC) cells were subcutaneously transplanted into blood-specific Mx-Cre or myeloid-specific LysM-Cre x Tet2 f/f mice (Tet2 -/- or Tet2 mye-) or control mice (CT). Single-cell RNA sequencing (scRNA-seq) was performed to determine the immune-cell profiles and mediators in tumors of Tet2 -/- mice (Tet2 -/- tumors). Whole transcriptome analysis (WTA) was also performed for granulocytic myeloid-derived cells (GMD), monocytic myeloid-derived cells (MMD), and tumor associated macrophages (TAM), as well as LLC cells sorted from Tet2 -/- tumors and CT tumors. Results: We found that tumor growth was enhanced in both Tet2 -/- and Tet2 mye- comparing to CT. Unsupervised clustering of scRNA-seq data identified 14 cell clusters: GMD into 3 (GMD1, GMD2, and GMD3), MMD into 5 (MMD1, MMD2, MMD3, MMD4, and MMD5), TAMs into 4 (TAM1, TAM2, TAM3, and TAM4), and DCs into 2 (DC1 and DC2). Notably, among all subclusters, the proportions of GMD1, GMD3, TAM3 and TAM4 were markedly expanded in Tet2 -/- tumors comparing to CT. Differentially expressed gene (DEG) analysis of scRNA-seq data found that S100a8 and S100a9 were highly expressed in Tet2-deficient GMD1 compared to CT. Furthermore, S100a8/S100a9 proteins were elevated in plasmas of Tet2 -/- comparing to those of CT. Pathway analysis using DEGs (p < 0.05) from WTA of GMD determined interleukin 1b (Il1b) signaling as upstream of S100a8/S100a9 activity. Gene set enrichment analysis (GSEA) also showed that 6 pathways related to Il1b were enriched in Tet2-deficient group compared to CT group. Gene ontology analysis (GO) for DEGs of GMD, MMD, and TAMs by WTA as well as 13 subclusters by scRNA-seq revealed that the "cellular response to IL-1" pathway was enriched in Tet2-deficient group compared to CT group. To define the downstream effectors in LLC cells, we performed WTA for LLC cells sorted from Tet2 -/- and CT tumors. We found that Vegfa, encoding a mediator for angiogenesis was highly upregulated in LLC cells sorted from Tet2 -/- tumors comparing to CT tumors. GSEA for WTA further identified that multiple Vegfa-related pathways as well as MAPK cascade were enriched in LLC cells from Tet2 -/- tumors comparing to those from CT tumors . Furthermore, S100a8/S100a9 induced Vegfa secretion from LLC cells in vitro. Remarkably, the area of blood vessels was increased in Tet2 -/- tumors comparing to CT tumors. Immunostaining exhibited that the number of Ly6g +GMD foci (>1000 px 2) expressing S100a8/S100a9 was increased in Tet2 -/- tumors comparing to CT tumors. Furthermore, LLC cells surrounding GMD foci highly expressed Vegfa in Tet2 -/- tumors. Finally, administration of an antibody against Emmprin, a receptor for S100a8/S100a9 inhibited the tumor growth in Tet2 -/-. Notably, the area of blood vessels in Tet2 -/- tumors with anti-Emmprin group was decreased at 2-fold compared to that seen in isotype group (p < 0.05). Consistently, S100A8/S100A9 induced VEGFA production in human lung cancer cells in vitro. Conclusions: Tet2-deificient immune cells promote lung cancer progression through S100a8/S100a9-Emmprin-Vegfa axis. Our study suggests a novel role of TET2-mutated clonal hematopoiesis in cancer progression and even provides a novel therapeutic target. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 3087-3087
Author(s):  
Diane Tseng ◽  
Shin-Heng Chiou ◽  
Xinbo Yang ◽  
Alexandre Reuben ◽  
Julie Wilhelmy ◽  
...  

3087 Background: While there has been much attention on mutation-associated neoantigens in tumors, there is less known about non-mutated tumor antigens that are shared across individuals. Understanding tumor-infiltrating T cell recognition of shared tumor antigens is important for understanding cancer immune recognition and escape, and may reveal novel targets for therapy. Methods: We have established a novel approach for discovering shared tumor antigens in human lung cancer. This approach involves identifying candidate T cell receptor (TCR) alpha/beta pairs that are predicted to exhibit specificity for shared tumor antigens in the context of a given human leukocyte antigen (HLA). We then screen the T cell receptor for binding to yeast display libraries of peptide-HLA. The Mark Davis lab at Stanford has previously developed an algorithm that groups T cell receptors into antigen specificity groups based on shared motifs within the TCR complementarity-determining region 3 (CDR3) sequences. Leveraging a dataset of over 700K CDR3 sequences from 178 HLA-typed non-small cell lung cancer (NSCLC) patients, we have found up to 4,300 antigen specificity groups after applying stringent cutoffs. We sequenced TCR alpha/beta pairs from 15 patients with lung adenocarcinoma (n = 4,705). Results: We identified an antigen specificity group enriched in tumor compared to adjacent uninvolved lungs. Antigen screening of the T cell receptor belonging to this specificity group using an A02 yeast display libraries led to the identification of a dominant peptide after four rounds of enrichment. We functionally validated that the peptide derived from the protein TMEM161A stimulated Jurkat cells expressing the TCR alpha/beta receptor of interest. We show that full-length TMEM161A protein is processed and presented into a peptide that stimulates primary T cells expressing the TCR alpha/beta receptor. We observe that a peptide from Epstein-Barr virus (EBV) protein LMP2 also stimulated the same TCR alpha/beta receptor. We have show that TMEM161A RNA and protein are overexpressed in human lung cancer compared to adjacent uninvolved lungs. Conclusions: We have demonstrated a novel approach toward antigen discovery and identified a shared tumor antigen TMEM161A in human lung cancer.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A762-A762
Author(s):  
Linnéa La Fleur ◽  
Johan Botling ◽  
Fei He ◽  
Catarina Pelicano ◽  
Giorgia Palano ◽  
...  

BackgroundThe progression and metastatic capacity of solid tumors are strongly influenced by immune cells in the tumor microenvironment (TME). In non-small cell lung cancer (NSCLC) accumulation of anti-inflammatory tumor-associated macrophages (TAMs) is associated with worse clinical outcome and resistance to therapy. Numerous clinical trials aiming to recover T cell anti-tumor activity have been failing due to the persistence immune suppression in TME. Thus, there is a clinical need for alternative treatments targeting the suppressive function of the TME. We have previously shown that antibodies targeting the scavenger receptor MARCO reprograms the pro-tumoral TAMs in murine cancer models. Here, we investigated the immune landscape of NSCLC in the presence of MARCO expressing TAMs. We tested targeting MARCO or the tumor mechanisms inducing MARCO on human TAMs and hypothesized that targeting these mechanisms will remodel the suppressive environment and relive the anti-tumor responses to increase the efficacy of immunotherapy.MethodsTo test our hypothesis, we first investigated the immune landscape of NSCLC in the presence of pro-tumoral MARCO+TAMs compared with tumors infiltrated by MARCO-TAMs. We next used RNAseq to analyze differential gene expression in NSCLC tumors infiltrated by MARCO positive or negative macrophages. In vitro, cytokine differentiated macrophages alternatively cultured with lung cancer cell lines were co-cultured with Natural Killer (NK) cells and T cells to mimic their interaction in the TME. Later, macrophages were treated with targeting antibodies and their phenotype and function were examined prior and following interaction with other immune cells.ResultsWe found that MARCO expressing TAM numbers correlated with increased occurrence of regulatory T cell and effector T cells and decreased NK cells in NSCLC infiltrated by MARCO+TAMs. Furthermore, transcriptomic data from the tumors uncovered a correlation between MARCO expression and the anti-inflammatory cytokine IL-37. Studies in vitro subsequently showed that lung cancer cells polarized macrophages to express MARCO and gain an anti-inflammatory phenotype through the release of IL-37. These human MARCO expressing TAMs blocked cytotoxic T cell and NK cell activation, inhibiting their proliferation, cytokine production and tumor killing capacity. Mechanistically, MARCO+ macrophages enhanced regulatory T (Treg) cell proliferation and IL-10 production and diminished CD8 T cell activities. Targeting MARCO or IL-37 receptor (IL-37R) repolarized TAMs resulted in recovered cytolytic activity and anti-tumoral capacity of NK cells and T cells.ConclusionsIn summary, our data demonstrate a novel immune therapeutic approach targeting human TAM immune suppression of NK and T cell anti-tumor activities and remodel immune suppression.Ethics ApprovalThe study was approved by Institutional Ethics Board, approval number Dnr 2013.977-31.1.


2020 ◽  
Author(s):  
Ozgun Kilic ◽  
Marcos R. Matos de Souza ◽  
Abdulaziz A. Almotlak ◽  
Jill M. Siegfried ◽  
Carston R. Wagner

ABSTRACTNumerous approaches have targeted the Epidermal Growth Factor Receptor (EGFR) for the development of anti-cancer therapeutics, since it is over-expressed on a variety of cancers. Recently, αEGFR chimeric antigen receptor (CAR)-T cells have shown potential promise for the immunological control of tumors. Our laboratory has recently demonstrated that bispecific chemically self-assembled nanorings (CSANs) can modify T cell surfaces and function as prosthetic antigen receptors (PARs). This technology allows selective targeting of tumor antigens due to high avidity of the multimeric rings, while incorporating a mechanism to dissociate the rings to prevent further T cell stimulation. Previously, PARs with single-chain variable fragments (scFvs) have been successful in vitro and in vivo, activating T cells selectively at the tumor site. Alternatively, here we report fibronectin (FN3)-based PARs with improved properties such as increased protein yield, rapid protein production, increased protein stability and predicted low immunogenicity due to the human origin of fibronectins. We examined the cytotoxicity of EGFR-targeting PARs in vitro in which the affinities of the αEGFR fibronectins, the αEGFR/ αCD3 valency of the CSANs and the antigen expression levels were varied. Based on these selective in vitro cytotoxicity results, we conducted an in vivo study of FN3-PARs using an orthotopic breast cancer model. The FN3-PARs demonstrated potent tumor growth suppression with no adverse effects. Furthermore, these results demonstrated that FN3-PARs modulated the tumor microenvironment by downregulating EGFR signaling resulting in decreased PD-L1 expression. In addition, the expression of PD-1 was also found to be reduced. Collectively, these results demonstrate that FN3-PARs have the potential to direct selective T cell targeted tumor killing and that αEGFR FN3-PARs may enhance anti-tumor T cell efficacy by modulating the tumor microenvironment.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A689-A689
Author(s):  
Naina Singhi ◽  
Carolyn Shasha ◽  
Sylvia Lee ◽  
Julia Szeto ◽  
Ata Moshiri ◽  
...  

BackgroundTumor-antigen specific CD4+ T cells are crucial for the efficacy of antibodies that block immune checkpoint proteins in mouse tumor models, but their activities in human tumor immunity are less clear. CD8+ T cells infiltrating human tumors, including those specific for tumor antigens, have been studied using single cell profiling techniques and exist in a variety of dysfunctional states. The transcriptional states of tumor-specific CD4+ T cells present in tumors and their potential contributions to the tumor microenvironment are less well understood.MethodsWe used targeted single cell RNA sequencing and matching of T cell receptor (TCR) sequences to identify phenotypic signatures that discriminated tumor antigen- and viral antigen-specific CD4+ T cells infiltrating human melanoma tumors in four patients. The presence of CD4+ T cells with these signatures was correlated with the number and phenotype of other immune cells in the tumor microenvironment in an extended cohort of 20 patients.ResultsWe identified 259 CD4+ T cells representing 40 different TCR clonotypes specific for 13 neoantigens and 108 cells representing 14 TCR clonotypes specific for self-antigens in four melanoma patients. High expression of CXCL13 defined conventional CD4+ T cells that recognize tumor associated neoantigens and self-antigens from bystander and viral antigen-specific CD4+ T cells. Tumor-reactive CD4+ T cells could be subdivided into clusters expressing memory and T follicular helper markers, and those expressing cytolytic markers and IFN-g. In an extended cohort of 20 patients with melanoma, the frequency of CXCL13+ CD4+ T cells in the tumor microenvironment correlated with the presence and proliferation of CD8+ T cells, the presence and maturation of B cells, the activation of interferon responsive genes in tumor associated macrophages, and patient survival. CD4+ T cells with similar transcriptional signatures were identified in data sets from breast and non-small cell lung cancer, suggesting these markers may enrich for tumor-reactive CD4+ T cells in many cancers.ConclusionsThese results identify a subset of tumor infiltrating conventional CD4+ T cells in melanoma that are enriched for reactivity to tumor antigens and exist in multiple phenotypic states. Correlations of the presence of these cells with the frequency and phenotype of other immune cells suggest roles for these tumor antigen-specific CD4+ T cells in providing CD8+ T cell help, driving recruitment and maturation of B cells, and activating macrophages. Isolating such cells based on their unique phenotype and utilizing them for adoptive therapy could alter the tumor microenvironment for therapeutic benefit.Ethics ApprovalAll Patient samples in this study were obtained from patients who signed informed consent in a study approved by the institutional review board of the Fred Hutchinson Cancer Research Center (protocol #2643).


2020 ◽  
Vol 8 (1) ◽  
pp. e000294
Author(s):  
Fan Sun ◽  
Zong Sheng Guo ◽  
Alyssa D Gregory ◽  
Steven D Shapiro ◽  
Gutian Xiao ◽  
...  

BackgroundProgrammed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) blockade therapy fails in the majority of patients with cancer. Oncolytic viruses represent a new class of therapeutic agents, yet the therapeutic efficacy is still disappointing. Moreover, intratumoral injection of viruses is the main approach and preclinical studies mainly employ syngeneic or xenograft models.MethodsUse an endogenous mouse lung cancer model that faithfully recapitulates human lung cancer, and various in vivo, ex vivo and in vitro assays, to investigate the efficacy, mechanism of action and resistance of systemically administered oncolytic vaccinia virus (oVV), immunotherapy and their combination, to find an effective therapy for refractory lung cancer.ResultsResembling human lung cancers, the majority of which are largely resistant to PD-1/PD-L1 blockade and with decreased PD-L1 expression and T-cell activation by our analysis, urethane-induced endogenous lung tumors in mice show reduced PD-L1 expression, low tumor-infiltrating lymphocytes and innate resistance to PD-1/PD-L1 blockade. Intravenous administration of oVV has efficacy and synergizes with simultaneous but not single blockade of PD-1 and T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) in this cancer model. Besides direct tumor cell killing, oVV induces T-cell lung recruitment, tumor infiltration, along with expression of PD-1 and TIM-3 on T cells and PD-1 and TIM-3 ligands on tumor cells and tumor-associated immune cells. Blockade of PD-1 or TIM-3 also causes their mutual induction on T cells.ConclusionsWhile systemic administration of oVV shows efficacy in lung cancer by killing tumor cells directly and recruiting and activating T cells for indirect tumor killing, its induction of PD-1 and TIM-3 on T cells and PD-1 and TIM-3 ligands on tumors and tumor-associated immune cells as well as mutual induction of PD-1 or TIM-3 on T cells by their blockade restricts the efficacy of oVV or its combination with single PD-1 or TIM-3 blockade. The triple combination therapy is more effective for refractory lung cancer, and possibly other cold cancers as well.


Author(s):  
Kosuke Sasaki ◽  
Shigetsugu Takano ◽  
Satoshi Tomizawa ◽  
Yoji Miyahara ◽  
Katsunori Furukawa ◽  
...  

Abstract Background Recent studies indicate that complement plays pivotal roles in promoting or suppressing cancer progression. We have previously identified C4b-binding protein α-chain (C4BPA) as a serum biomarker for the early detection of pancreatic ductal adenocarcinoma (PDAC). However, its mechanism of action remains unclear. Here, we elucidated the functional roles of C4BPA in PDAC cells and the tumor microenvironment. Methods We assessed stromal C4BPA, the C4BPA binding partner CD40, and the number of CD8+ tumor-infiltrating lymphocytes in resected human PDAC tissues via immunohistochemical staining. The biological functions of C4BPA were investigated in peripheral blood mononuclear cells (PBMCs) and human PDAC cell lines. Mouse C4BPA (mC4BPA) peptide, which is composed of 30 amino acids from the C-terminus and binds to CD40, was designed for further in vitro and in vivo experiments. In a preclinical experiment, we assessed the efficacy of gemcitabine plus nab-paclitaxel (GnP), dual immune checkpoint blockades (ICBs), and mC4BPA peptide in a mouse orthotopic transplantation model. Results Immunohistochemical analysis revealed that high stromal C4BPA and CD40 was associated with favorable PDAC prognosis (P=0.0005). Stromal C4BPA strongly correlated with the number of CD8+ tumor-infiltrating lymphocytes (P=0.001). In in vitro experiments, flow cytometry revealed that recombinant human C4BPA (rhC4BPA) stimulation increased CD4+ and CD8+ T cell numbers in PBMCs. rhC4BPA also promoted the proliferation of CD40-expressing PDAC cells. By contrast, combined treatment with gemcitabine and rhC4BPA increased PDAC cell apoptosis rate. mC4BPA peptide increased the number of murine T lymphocytes in vitro and the number of CD8+ tumor-infiltrating lymphocytes surrounding PDAC tumors in vivo. In a preclinical study, GnP/ICBs/mC4BPA peptide treatment, but not GnP treatment, led to the accumulation of a greater number of CD8+ T cells in the periphery of PDAC tumors and to greater tumor regression than did control treatment. Conclusions These findings demonstrate that the combination of GnP therapy with C4BPA inhibits PDAC progression by promoting antitumor T cell accumulation in the tumor microenvironment.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ronggang Luo ◽  
Yi Zhuo ◽  
Quan Du ◽  
Rendong Xiao

Abstract Background To detect and investigate the expression of POU domain class 2 transcription factor 2 (POU2F2) in human lung cancer tissues, its role in lung cancer progression, and the potential mechanisms. Methods Immunohistochemical (IHC) assays were conducted to assess the expression of POU2F2 in human lung cancer tissues. Immunoblot assays were performed to assess the expression levels of POU2F2 in human lung cancer tissues and cell lines. CCK-8, colony formation, and transwell-migration/invasion assays were conducted to detect the effects of POU2F2 and AGO1 on the proliferaion and motility of A549 and H1299 cells in vitro. CHIP and luciferase assays were performed for the mechanism study. A tumor xenotransplantation model was used to detect the effects of POU2F2 on tumor growth in vivo. Results We found POU2F2 was highly expressed in human lung cancer tissues and cell lines, and associated with the lung cancer patients’ prognosis and clinical features. POU2F2 promoted the proliferation, and motility of lung cancer cells via targeting AGO1 in vitro. Additionally, POU2F2 promoted tumor growth of lung cancer cells via AGO1 in vivo. Conclusion We found POU2F2 was highly expressed in lung cancer cells and confirmed the involvement of POU2F2 in lung cancer progression, and thought POU2F2 could act as a potential therapeutic target for lung cancer.


Sign in / Sign up

Export Citation Format

Share Document