scholarly journals 638 Hypoxia reprograms natural killer cells and impairs their therapeutic potential

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A667-A667
Author(s):  
Philippa Kennedy ◽  
Upasana Sunil Arvindam ◽  
Brianna Ettestad ◽  
Shee Kwan Phung ◽  
Quinlan Kile ◽  
...  

BackgroundNatural killer (NK) cell-based immunotherapies, from biologics to cell products, are being studied in the clinic across many cancer settings. These treatments have had therapeutic success for hematological malignancies but their impact on solid tumors remains limited. To succeed in the solid tumor setting, NK cells must enter the tumor microenvironment, with its low oxygen concentration (hypoxia), and retain functionality. Hypoxia is known to impair NK cell function, but a greater understanding of the mechanisms driving this impairment could lead to improvements in NK cell immunotherapy for solid tumors.MethodsWe used an advanced incubator system: AVATARTM (Xcell biosciences), to finely tune the oxygen conditions in vitro to mimic the physiologic (5–12% oxygen) and hypoxic (1% oxygen) conditions found in vivo. Human NK cells were isolated from healthy donor blood and cultured with a low dose of interleukin 15 for up to 7 days, at 20% oxygen (standard incubator) or at 12%, 5% or 1% oxygen, to replicate the physiological conditions found in blood, bone marrow or hypoxic tumor, respectively. Phenotypes were analyzed by mass cytometry. Confocal and live cell imaging examined the cytotoxic process. Metabolic processes were assessed by flow cytometry and Seahorse assay. RNAseq and ATACseq were performed.ResultsNK cells were capable of natural cytotoxicity and antibody-dependent cellular cytotoxicity at physiological oxygen concentrations (5–20% oxygen), but killing was impaired under hypoxia (1% oxygen). Examination of the cytotoxic process revealed conjugate formation, polarization of granules to the synapse and granule release were not impaired by hypoxia. However, granzyme B (a component of cytotoxic granules) and the death receptor TRAIL were decreased in NK cells exposed to hypoxia (figure 1A). RNAseq revealed upregulation of histone demethylases under hypoxia, with a shift in metabolism and decrease in the cell cycle. Glycolysis was upregulated under hypoxia and there was a concomitant increase in reactive oxygen species. ATACseq revealed profound epigenetic regulation of NK cells exposed to hypoxia, with limited changes occurring in NK cells cultured in 20% oxygen (figure 1B). Activation, adhesion, killing, proliferation and cytokine secretion were all pathways differentially regulated under hypoxia compared to 20% oxygen.ConclusionsNK cells exposed to hypoxia fail to kill tumor cells. Mechanistically, a lack of granzyme B and death receptors contribute to this deficit. ATACseq reveals epigenetic signatures associated with NK cell function that may allow interventions crucial to overcome barriers to solid tumor immunotherapy.AcknowledgementsWe would like to acknowledge the services of the Minnesota Supercomputing Institute, the University Imaging Centers and the University Flow Cytometry Resource, all University of Minnesota.Abstract 638 Figure 1NK cells are altered by exposure to hypoxia. Human NK cells from healthy donor blood were cultured in standard incubators (20% oxygen) or hypoxia (1% oxygen) for 7 days. (A) The relative abundance of granzyme B and TRAIL were compared on these NK cells at day 7 by time of flight mass cytometry. Analyzed by differential expression analysis through Astrolabe Diagnostics. Each line represents a donor. (B) Venn diagram of overlap between ATACseq differential expression analysis peaks. 2,413 regions were open at day 7 compared to day 0, when cultured under hypoxia (red circle); 365 regions were open at day 7 compared to day 0, when cultured in standard incubators (yellow circle).

Blood ◽  
2006 ◽  
Vol 107 (9) ◽  
pp. 3665-3668 ◽  
Author(s):  
Josephine L. Meade ◽  
Erika A. de Wynter ◽  
Peter Brett ◽  
Saghira Malik Sharif ◽  
C. Geoffrey Woods ◽  
...  

Activation of granzyme B, a key cytolytic effector molecule of natural killer (NK) cells, requires removal of an N-terminal pro-domain. In mice, cathepsin C is required for granzyme processing and normal NK cell cytolytic function, whereas in patients with Papillon-Lefèvre syndrome (PLS), loss-of-function mutations in cathepsin C do not affect lymphokine activated killer (LAK) cell function. Here we demonstrate that resting PLS NK cells do have a cytolytic defect and fail to induce the caspase cascade in target cells. NK cells from these patients contain inactive granzyme B, indicating that cathepsin C is required for granzyme B activation in unstimulated human NK cells. However, in vitro activation of PLS NK cells with interleukin-2 restores cytolytic function and granzyme B activity by a cathepsin C-independent mechanism. This is the first documented example of a human mutation affecting granzyme B activity and highlights the importance of cathepsin C in human NK cell function.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5250-5250 ◽  
Author(s):  
Bei Jia ◽  
Chenchen Zhao ◽  
David F. Claxton ◽  
W. Christopher Ehmann ◽  
Witold B. Rybka ◽  
...  

Abstract Natural killer (NK) cells are essential innate immune effectors with promising anti-leukemia activity in acute myeloid leukemia (AML). However, clinical success of applying NK cells in AML treatment has not been achieved. A better understanding of the regulatory mechanisms for NK cell function is important to optimize this therapeutic strategy. T cell immunoglobulin and ITIM domain (TIGIT) is a recently identified inhibitory receptor expressed on T cells and NK cells. Multiple studies including ours have demonstrated its suppressive effect in anti-tumor CD8 T cell response. However whether and how TIGIT impacts NK cells in AML is unknown. Here we performed phenotypic and functional studies on NK cells derived from patients with newly diagnosed AML (n=30). Cells collected from healthy individuals (n=18) were used as controls. TIGIT expression and their contributions to NK cell function in AML were assessed. Peripheral blood samples were first examined by flow cytometry for the frequency of NK cells (defined as CD56+CD3-). The percentage of NK cells among peripheral blood mononuclear cells (PBMCs) in AML patients is comparable with that of healthy controls. In contrast, when we performed functional analysis to assess NK cells for cytokine release upon in vitro stimulation with a human leukemia cell line K562, we observed significantly lower intracellular production of IFN-γ in cells from AML patients compared with that of healthy controls. Consistently NK cells from AML patients expressed less Perforin, indicating a compromised killing capacity. We next evaluated the expression of TIGIT on CD56+CD3- NK cells. As some AML blasts and monocytes also express CD56, we performed multichannel flow cytometry and carefully gated out other cell components when assessing TIGIT expression. To our surprise, we observed a significantly lower frequency of TIGIT-expressing NK cells in AML compared with that of healthy controls (36.82 ±4.543% vs. 48.9±3.818%, P=0.0463). This data indicated that low-TIGIT expression associates with impaired NK cell function and AML progression. We further examined the phenotype and functional status of TIGIT+ NK cells. Expression of activating receptors (CD16 and CD160) and inhibiting receptors (KIR and NKG2A) on TIGIT+ vs. TIGIT- NK cells were analyzed. We observed a significant higher expression of CD16 (51.27±9.009% vs. 20.63±5.334%, P=0.0001) and CD160 (39.84±6.447% vs. 21.24±4.287%, P=0.0103) on TIGIT+ NK cells compared with that of TIGIT- NK cells. By contrast, TIGIT+ NK cells expressed lower KIR (24.06±3.796% vs. 43.59±6.96%, P=0.0046) and NKG2A (7.658±1.717% vs. 18.68±4.256%, P=0.0167) than TIGIT- NK cells. Importantly, functional studies demonstrated an elevated expression of Granzyme B and increased cytokine (IFN-γ and TNF-α) production by TIGIT+ NK cells compared with TIGIT- NK cells (IFN-γ, P=0.0283; TNF-α P=0.0347; Granzyme B, P=0.0493). These data suggest that TIGIT expression on NK cells associated with activated and high functional status. Collectively, our study demonstrates that 1) in line with lower capacity to produce IFN-γ, NK cells from AML patients express less frequency of TIGIT compared with healthy individuals; 2) TIGIT+ NK cells from AML patients express high levels of activating receptors and are highly functional manifested by more cytokine production and enhanced expression of Granzyme B compared with TIGIT- NK cells. These results indicate that in AML patient, TIGIT may contribute to the upregulation of NK cell function. This is in contrast to the observations of CD8 T cells in which TIGIT plays a suppressive role. Targeting TIGIT for cancer treatment is currently under active development. Our findings bring a call for caution on the TIGIT-targeted therapeutic strategy in AML as TIGIT might be a double-edged sword in anti-leukemia immune regulation. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 118 (22) ◽  
pp. e2020459118
Author(s):  
Anne-Sophie Chretien ◽  
Raynier Devillier ◽  
Samuel Granjeaud ◽  
Charlotte Cordier ◽  
Clemence Demerle ◽  
...  

Natural killer (NK) cells are major antileukemic immune effectors. Leukemic blasts have a negative impact on NK cell function and promote the emergence of phenotypically and functionally impaired NK cells. In the current work, we highlight an accumulation of CD56−CD16+ unconventional NK cells in acute myeloid leukemia (AML), an aberrant subset initially described as being elevated in patients chronically infected with HIV-1. Deep phenotyping of NK cells was performed using peripheral blood from patients with newly diagnosed AML (n = 48, HEMATOBIO cohort, NCT02320656) and healthy subjects (n = 18) by mass cytometry. We showed evidence of a moderate to drastic accumulation of CD56−CD16+ unconventional NK cells in 27% of patients. These NK cells displayed decreased expression of NKG2A as well as the triggering receptors NKp30 and NKp46, in line with previous observations in HIV-infected patients. High-dimensional characterization of these NK cells highlighted a decreased expression of three additional major triggering receptors required for NK cell activation, NKG2D, DNAM-1, and CD96. A high proportion of CD56−CD16+ NK cells at diagnosis was associated with an adverse clinical outcome and decreased overall survival (HR = 0.13; P = 0.0002) and event-free survival (HR = 0.33; P = 0.018) and retained statistical significance in multivariate analysis. Pseudotime analysis of the NK cell compartment highlighted a disruption of the maturation process, with a bifurcation from conventional NK cells toward CD56−CD16+ NK cells. Overall, our data suggest that the accumulation of CD56−CD16+ NK cells may be the consequence of immune escape from innate immunity during AML progression.


2019 ◽  
Vol 3 (6) ◽  
pp. 897-907 ◽  
Author(s):  
Martin Felices ◽  
Behiye Kodal ◽  
Peter Hinderlie ◽  
Michael F. Kaminski ◽  
Sarah Cooley ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL) is characterized by chronic clonal expansion of mature CD19-expressing B lymphocytes and global dysfunction of immune effectors, including natural killer (NK) cells. CLL remains incurable, and novel approaches to refractory CLL are needed. Our group has previously described trispecific killer engager (TriKE) molecules that redirect NK cell function against tumor cells. TriKE reagents simultaneously bind an activating receptor on NK cells, CD16, and a tumor antigen while also providing an NK cell expansion signal via an interleukin-15 moiety. Here we developed the novel CD19-targeting 161519 TriKE. We demonstrate that 161519 TriKE induced killing of a CD19-expressing Burkitt’s lymphoma cell line and examined the impact on primary CLL targets using healthy donor and patient NK cells. 161519 TriKE induced potent healthy donor NK cell activation, proliferation, and directed killing. Furthermore, 161519 TriKE rescued the inflammatory function of NK cells obtained from CLL patient peripheral blood samples. Finally, we show that 161519 TriKE induced better directed killing of CLL in vitro when compared with rituximab. In conclusion, 161519 TriKE drives a potent activating and proliferative signal on NK cells, resulting in enhanced NK cell expansion and CLL target killing. Our findings indicate the potential immunotherapeutic value of 161519 TriKE in CLL.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 133-133
Author(s):  
Xuefang Cao ◽  
Sheng F. Cai ◽  
Todd A. Fehniger ◽  
Jiling Song ◽  
David Piwnica-Worms ◽  
...  

Abstract NK-dependent clearance of RMAS lymphoma and B16 melanoma (MHC Ilow) has been demonstrated in NK cell-deficient mice (Kim S et al, PNAS. 2000 Mar; 97(6): 2731–6). We recently investigated the roles of granzyme (Gzm) A and B in NK-dependent clearance of RMAS and B16 cells. The survival curves following intravenous injection of 2x105 RMAS cells are shown in the Figure; similar results were found with B16 cells. All granzyme AxB-deficient mice died within 6 weeks. Survival of granzyme A-deficient mice was similar to that of WT mice. Surprisingly, granzyme B-deficient mice were more resistant than WT mice to these tumor challenges. Previously, our laboratory demonstrated that human regulatory T (Treg) cells can use the granule exocytosis pathway to kill a variety of autologous immune cells in vitro (Grossman WJ et al, Immunity. 2004 Oct; 21(4): 589–601). Based on these results, we hypothesized that these tumor cell lines may induce granzyme B expression in Tregs, which in turn suppress the function of the NK cells responsible for clearing the tumors. Indeed, flow cytometric studies revealed that granzyme B (but not granzyme A) was highly expressed in 10–30% of CD4+/FoxP3+ Tregs found in the tumor environment (i.e. ascites fluid, tumor-infiltrated livers, or lungs). In contrast, very few granzyme B-expressing cells (<1%) were detected in the Tregs found in the peripheral spleens or lymph nodes of tumor-bearing mice or in the spleens, livers and lungs of naive mice. Within the NK cell compartment, granzyme A expression was constitutive, and it was persistently expressed following tumor challenge. While granzyme B was detected in only 1–5% of NK cells in the spleens, livers and lungs of naive mice, 20–40% of NK cells in the tumor environment expressed granzyme B following tumor challenge. To determine whether Tregs require granzyme B to suppress NK cell function in vivo, we purified Tregs (95% pure CD4+/CD25+ cells) from the resting spleens of both WT and granzyme B-deficient mice, and co-injected them intraperitoneally with 2x106 luciferase-tagged RMAS cells into granzyme B-deficient mice. Tumor burden was assessed using in vivo bioluminescence imaging. Add-back of 2x106 WT Tregs into granzyme B-deficient mice restored tumor growth to 40% of that observed at day 7 in WT mice, whose tumor burden was approximately 50-fold higher than that of granzyme B-deficient mice. Add-back of equal doses of granzyme B-deficient Tregs had no effect on tumor burden. Our data suggest that these tumor cell lines induce the expression of granzyme B in Tregs, which subsequently suppress tumor-specific NK cells. These data demonstrate for the first time that granzyme B plays a crucial role in Treg-mediated suppression of NK cell function in vivo. By recruiting and activating Tregs that inhibit NK cell function, these tumors gain a survival advantage that is lost in the setting of granzyme B deficiency in the Tregs. This study therefore suggests that targeted inhibition of granzyme B in Tregs may represent a novel approach to break Treg-mediated tumor tolerance. Figure Figure


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3678-3678
Author(s):  
Douglas W White ◽  
Catherine R Keppel ◽  
Stephanie E Schneider ◽  
James Coder ◽  
Tiffany A Reese ◽  
...  

Abstract Abstract 3678 Poster Board III-614 Natural killer (NK) cells are lymphocytes originally identified by their ability to kill target cells without prior sensitization. However, murine NK cells require an antecedent ‘arming’ event to translate cytotoxic effector proteins (perforin and granzymes) resulting in potent cytotoxic capacity. In contrast to mice, most NK cells (CD56dim) from the peripheral blood of healthy humans are armed with pre-formed perforin and granzyme B proteins and mediate killing of NK sensitive targets directly ex vivo. This suggests that NK cells from specific pathogen free (SPF) laboratory mice are lacking a critical arming event present in healthy humans, and provides an experimental system to elucidate the events that result in NK cell arming in vivo. Since latent herpesviruses are highly prevalent and alter multiple aspects of host immunity, we hypothesized that the immune environment created by a latent herpesvirus infection arms NK cells. NK cells from mice latently infected with Murid herpesvirus 4 (MuHV-4), a virus closely related to the human viruses Kaposi's sarcoma associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), were armed as evidenced by increased granzyme B protein expression, cytotoxicity, and interferon-gamma production. Adoptive transfer experiments with naïve NK cells indicated that NK arming occurred rapidly (≤ 72 hours) in the latently infected host and did not require acute infection. In addition, experiments utilizing a genetic variant of MuHV-4 that acutely infects mice similar to wild-type MuHV-4, but does not establish latency, confirmed that acute infection was not responsible for this NK cell modulation. Finally, NK cells armed by latent infection protected the host against a lethal RMA-S lymphoma challenge. Thus, the immune environment created by a latent herpesvirus infection arms NK cell function in vivo. These results indicate that some of the differences between human and SPF laboratory-mouse NK cell function may reflect a disparity in immune activation induced by chronic virus infection, as opposed to an intrinsic difference in the NK cells themselves. Moreover, these findings indicate that the activation state of the innate immune system needs to be taken into account when using mice to model immune responses against pathogens and tumors. Disclosures: No relevant conflicts of interest to declare.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 263
Author(s):  
Philip Rosenstock ◽  
Thomas Kaufmann

Sialic acids are sugars with a nine-carbon backbone, present on the surface of all cells in humans, including immune cells and their target cells, with various functions. Natural Killer (NK) cells are cells of the innate immune system, capable of killing virus-infected and tumor cells. Sialic acids can influence the interaction of NK cells with potential targets in several ways. Different NK cell receptors can bind sialic acids, leading to NK cell inhibition or activation. Moreover, NK cells have sialic acids on their surface, which can regulate receptor abundance and activity. This review is focused on how sialic acids on NK cells and their target cells are involved in NK cell function.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Natalie Eaton-Fitch ◽  
Hélène Cabanas ◽  
Stanley du Preez ◽  
Donald Staines ◽  
Sonya Marshall-Gradisnik

Abstract Background Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a serious multifactorial disorder. The origin remains ambiguous, however reduced natural killer (NK) cell cytotoxicity is a consistent immunological feature of ME/CFS. Impaired transient receptor potential melastatin 3 (TRPM3), a phosphatidylinositol dependent channel, and impaired calcium mobilisation have been implicated in ME/CFS pathology. This investigation aimed to examine the localisation of TRPM3 at the NK cell plasma membrane and co-localisation with phosphatidylinositol 4,5-bisphosphate (PIP2). The effect of IL-2 priming and treatment using pregnenolone sulfate (PregS) and ononetin on TRPM3 co-localisation and NK cell cytotoxicity in ME/CFS patients and healthy controls (HC) was also investigated. Methods NK cells were isolated from 15 ME/CFS patients and 15 age- and sex-matched HC. Immunofluorescent technique was used to determine co-localisation of TRPM3 with the NK cell membrane and with PIP2 of ME/CFS patients and HC. Flow cytometry was used to determine NK cell cytotoxicity. Following IL-2 stimulation and treatment with PregS and ononetin changes in co-localisation and NK cell cytotoxicity were measured. Results Overnight treatment of NK cells with PregS and ononetin resulted in reduced co-localisation of TRPM3 with PIP2 and actin in HC. Co-localisation of TRPM3 with PIP2 in NK cells was significantly reduced in ME/CFS patients compared with HC following priming with IL-2. A significant increase in co-localisation of TRPM3 with PIP2 was reported following overnight treatment with ononetin within ME/CFS patients and between groups. Baseline NK cell cytotoxicity was significantly reduced in ME/CFS patients; however, no changes were observed following overnight incubation with IL-2, PregS and ononetin between HC and ME/CFS patients. IL-2 stimulation significantly enhanced NK cell cytotoxicity in HC and ME/CFS patients. Conclusion Significant changes in co-localisation suggest PIP2-dependent TRPM3 function may be impaired in ME/CFS patients. Stimulation of NK cells with IL-2 significantly enhanced cytotoxic function in ME/CFS patients demonstrating normal function compared with HC. A crosstalk exists between IL-2 and TRPM3 intracellular signalling pathways which are dependent on Ca2+ influx and PIP2. While IL-2R responds to IL-2 binding in vitro, Ca2+ dysregulation and impaired intracellular signalling pathways impede NK cell function in ME/CFS patients.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1577
Author(s):  
Matteo Tanzi ◽  
Michela Consonni ◽  
Michela Falco ◽  
Federica Ferulli ◽  
Enrica Montini ◽  
...  

The limited efficacy of Natural Killer (NK) cell-based immunotherapy results in part from the suboptimal expansion and persistence of the infused cells. Recent reports suggest that the generation of NK cells with memory-like properties upon in vitro activation with defined cytokines might be an effective way of ensuring long-lasting NK cell function in vivo. Here, we demonstrate that activation with IL-12, IL-15 and IL-18 followed by a one-week culture with optimal doses of Interleukin (IL-2) and IL-15 generates substantial numbers of memory-like NK cells able to persist for at least three weeks when injected into NOD scid gamma (NSG) mice. This approach induces haploidentical donor-derived memory-like NK cells that are highly lytic against patients’ myeloid or lymphoid leukemia blasts, independent of the presence of alloreactive cell populations in the donor and with negligible reactivity against patients’ non-malignant cells. Memory-like NK cells able to lyse autologous tumor cells can also be generated from patients with solid malignancies. The anti-tumor activity of allogenic and autologous memory-like NK cells is significantly greater than that displayed by NK cells stimulated overnight with IL-2, supporting their potential therapeutic value both in patients affected by high-risk acute leukemia after haploidentical hematopoietic stem cell transplantation and in patients with advanced solid malignancies.


2021 ◽  
Vol 22 (2) ◽  
pp. 656
Author(s):  
Hantae Jo ◽  
Byungsun Cha ◽  
Haneul Kim ◽  
Sofia Brito ◽  
Byeong Mun Kwak ◽  
...  

Natural killer (NK) cells are lymphocytes that can directly destroy cancer cells. When NK cells are activated, CD56 and CD107a markers are able to recognize cancer cells and release perforin and granzyme B proteins that induce apoptosis in the targeted cells. In this study, we focused on the role of phytoncides in activating NK cells and promoting anticancer effects. We tested the effects of several phytoncide compounds on NK-92mi cells and demonstrated that α-pinene treatment exhibited higher anticancer effects, as observed by the increased levels of perforin, granzyme B, CD56 and CD107a. Furthermore, α-pinene treatment in NK-92mi cells increased NK cell cytotoxicity in two different cell lines, and immunoblot assays revealed that the ERK/AKT pathway is involved in NK cell cytotoxicity in response to phytoncides. Furthermore, CT-26 colon cancer cells were allografted subcutaneously into BALB/c mice, and α-pinene treatment then inhibited allografted tumor growth. Our findings demonstrate that α-pinene activates NK cells and increases NK cell cytotoxicity, suggesting it is a potential compound for cancer immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document