scholarly journals Fifteen years of research on oral–facial–digital syndromes: from 1 to 16 causal genes

2017 ◽  
Vol 54 (6) ◽  
pp. 371-380 ◽  
Author(s):  
Ange-Line Bruel ◽  
Brunella Franco ◽  
Yannis Duffourd ◽  
Julien Thevenon ◽  
Laurence Jego ◽  
...  

Oral–facial–digital syndromes (OFDS) gather rare genetic disorders characterised by facial, oral and digital abnormalities associated with a wide range of additional features (polycystic kidney disease, cerebral malformations and several others) to delineate a growing list of OFDS subtypes. The most frequent, OFD type I, is caused by a heterozygous mutation in theOFD1gene encoding a centrosomal protein. The wide clinical heterogeneity of OFDS suggests the involvement of other ciliary genes. For 15 years, we have aimed to identify the molecular bases of OFDS. This effort has been greatly helped by the recent development of whole-exome sequencing (WES). Here, we present all our published and unpublished results for WES in 24 cases with OFDS. We identified causal variants in five new genes (C2CD3,TMEM107,INTU,KIAA0753andIFT57) and related the clinical spectrum of four genes in other ciliopathies (C5orf42,TMEM138,TMEM231andWDPCP) to OFDS. Mutations were also detected in two genes previously implicated in OFDS. Functional studies revealed the involvement of centriole elongation, transition zone and intraflagellar transport defects in OFDS, thus characterising three ciliary protein modules: the complex KIAA0753-FOPNL-OFD1, a regulator of centriole elongation; the Meckel-Gruber syndrome module, a major component of the transition zone; and the CPLANE complex necessary for IFT-A assembly. OFDS now appear to be a distinct subgroup of ciliopathies with wide heterogeneity, which makes the initial classification obsolete. A clinical classification restricted to the three frequent/well-delineated subtypes could be proposed, and for patients who do not fit one of these three main subtypes, a further classification could be based on the genotype.

Author(s):  
А.Р. Зарипова ◽  
Л.Р. Нургалиева ◽  
А.В. Тюрин ◽  
И.Р. Минниахметов ◽  
Р.И. Хусаинова

Проведено исследование гена интерферон индуцированного трансмембранного белка 5 (IFITM5) у 99 пациентов с несовершенным остеогенезом (НО) из 86 неродственных семей. НО - клинически и генетически гетерогенное наследственное заболевание соединительной ткани, основное клиническое проявление которого - множественные переломы, начиная с неонатального периода жизни, зачастую приводящие к инвалидизации с детского возраста. К основным клиническим признакам НО относятся голубые склеры, потеря слуха, аномалия дентина, повышенная ломкость костей, нарушения роста и осанки с развитием характерных инвалидизирующих деформаций костей и сопутствующих проблем, включающих дыхательные, неврологические, сердечные, почечные нарушения. НО встречается как у мужчин, так и у женщин. До сих пор не определена степень генетической гетерогенности заболевания. На сегодняшний день известно 20 генов, вовлеченных в патогенез НО, и исследователи разных стран продолжают искать новые гены. В последнее десятилетие стало известно, что аутосомно-рецессивные, аутосомно-доминантные и Х-сцепленные мутации в широком спектре генов, кодирующих белки, которые участвуют в синтезе коллагена I типа, его процессинге, секреции и посттрансляционной модификации, а также в белках, которые регулируют дифференцировку и активность костеобразующих клеток, вызывают НО. Мутации в гене IFITM5, также называемом BRIL (bone-restricted IFITM-like protein), участвующем в формировании остеобластов, приводят к развитию НО типа V. До 5% пациентов имеют НО типа V, который характеризуется образованием гиперпластического каллуса после переломов, кальцификацией межкостной мембраны предплечья и сетчатым рисунком ламелирования, наблюдаемого при гистологическом исследовании кости. В 2012 г. гетерозиготная мутация (c.-14C> T) в 5’-нетранслируемой области (UTR) гена IFITM5 была идентифицирована как основная причина НО V типа. В представленной работе проведен анализ гена IFITM5 и идентифицирована мутация c.-14C>T, возникшая de novo, у одного пациента с НО, которому впоследствии был установлен V тип заболевания. Также выявлены три известных полиморфных варианта: rs57285449; c.80G>C (p.Gly27Ala) и rs2293745; c.187-45C>T и rs755971385 c.279G>A (p.Thr93=) и один ранее не описанный вариант: c.128G>A (p.Ser43Asn) AGC>AAC (S/D), которые не являются патогенными. В статье уделяется внимание особенностям клинических проявлений НО V типа и рекомендуется определение мутации c.-14C>T в гене IFITM5 при подозрении на данную форму заболевания. A study was made of interferon-induced transmembrane protein 5 gene (IFITM5) in 99 patients with osteogenesis imperfecta (OI) from 86 unrelated families and a search for pathogenic gene variants involved in the formation of the disease phenotype. OI is a clinically and genetically heterogeneous hereditary disease of the connective tissue, the main clinical manifestation of which is multiple fractures, starting from the natal period of life, often leading to disability from childhood. The main clinical signs of OI include blue sclera, hearing loss, anomaly of dentin, increased fragility of bones, impaired growth and posture, with the development of characteristic disabling bone deformities and associated problems, including respiratory, neurological, cardiac, and renal disorders. OI occurs in both men and women. The degree of genetic heterogeneity of the disease has not yet been determined. To date, 20 genes are known to be involved in the pathogenesis of OI, and researchers from different countries continue to search for new genes. In the last decade, it has become known that autosomal recessive, autosomal dominant and X-linked mutations in a wide range of genes encoding proteins that are involved in the synthesis of type I collagen, its processing, secretion and post-translational modification, as well as in proteins that regulate the differentiation and activity of bone-forming cells cause OI. Mutations in the IFITM5 gene, also called BRIL (bone-restricted IFITM-like protein), involved in the formation of osteoblasts, lead to the development of OI type V. Up to 5% of patients have OI type V, which is characterized by the formation of a hyperplastic callus after fractures, calcification of the interosseous membrane of the forearm, and a mesh lamellar pattern observed during histological examination of the bone. In 2012, a heterozygous mutation (c.-14C> T) in the 5’-untranslated region (UTR) of the IFITM5 gene was identified as the main cause of OI type V. In the present work, the IFITM5 gene was analyzed and the de novo c.-14C> T mutation was identified in one patient with OI who was subsequently diagnosed with type V of the disease. Three known polymorphic variants were also identified: rs57285449; c.80G> C (p.Gly27Ala) and rs2293745; c.187-45C> T and rs755971385 c.279G> A (p.Thr93 =) and one previously undescribed variant: c.128G> A (p.Ser43Asn) AGC> AAC (S / D), which were not pathogenic. The article focuses on the features of the clinical manifestations of OI type V, and it is recommended to determine the c.-14C> T mutation in the IFITM5 gene if this form of the disease is suspected.


2021 ◽  
Vol 22 (17) ◽  
pp. 9329
Author(s):  
Panpan Zhu ◽  
Jingjin Xu ◽  
Yadong Wang ◽  
Chengtian Zhao

Cilia are microtubule-based structures projecting from the cell surface that perform diverse biological functions. Ciliary defects can cause a wide range of genetic disorders known collectively as ciliopathies. Intraflagellar transport (IFT) proteins are essential for the assembly and maintenance of cilia by transporting proteins along the axoneme. Here, we report a lack of Ift74, a core IFT-B protein, leading to ciliogenesis defects in multiple organs during early zebrafish development. Unlike rapid photoreceptor cell death in other ift-b mutants, the photoreceptors of ift74 mutants exhibited a slow degeneration process. Further experiments demonstrated that the connecting cilia of ift74 mutants were initially formed but failed to maintain, which resulted in slow opsin transport efficiency and eventually led to photoreceptor cell death. We also showed that the large amount of maternal ift74 transcripts deposited in zebrafish eggs account for the main reason of slow photoreceptor degeneration in the mutants. Together, our data suggested Ift74 is critical for ciliogenesis and that Ift proteins play variable roles in different types of cilia during early zebrafish development. To our knowledge, this is the first study to show ift-b mutant that displays slow photoreceptor degeneration in zebrafish.


2018 ◽  
Author(s):  
Alind Gupta ◽  
Lacramioara Fabian ◽  
Julie A. Brill

AbstractCilia are cellular antennae that are essential for human development and physiology. A large number of genetic disorders linked to cilium dysfunction are associated with proteins that localize to the ciliary transition zone (TZ), a structure at the base of cilia that regulates trafficking in and out of the cilium. Despite substantial effort to identify TZ proteins and their roles in cilium assembly and function, processes underlying maturation of TZs are not well understood. Here, we report a role for the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) in TZ maturation in the Drosophila melanogaster male germline. We show that reduction of cellular PIP2 levels by ectopic expression of a phosphoinositide phosphatase or mutation of the type I phosphatidylinositol phosphate kinase Skittles induces formation of longer than normal TZs. These hyperelongated TZs exhibit functional defects, including loss of plasma membrane tethering. We also report that the onion rings (onr) allele of Drosophila exo84 decouples TZ hyperelongation from loss of cilium-plasma membrane tethering. Our results reveal a requirement for PIP2 in supporting ciliogenesis by promoting proper TZ maturation.Brief summary statementThe authors show that the membrane phospholipid PIP2, and the kinase that produces PIP2 called Skittles, are needed for normal ciliary transition zone morphology and function in the Drosophila male germline.


2020 ◽  
Vol 24 (2) ◽  
pp. 219-227
Author(s):  
A. R. Zaripova ◽  
R. I. Khusainova

Osteogenesis imperfecta (imperfect osteogenesis in the Russian literature) is the most common hereditary form of bone fragility, it is a genetically and clinically heterogeneous disease with a wide range of clinical severity, often leading to disability from early childhood. It is based on genetic disorders leading to a violation of the structure of bone tissue, which leads to frequent fractures, impaired growth and posture, with the development of characteristic disabling bone deformities and associated problems, including respiratory, neurological, cardiac, renal impairment, hearing loss. Osteogenesis imperfecta occurs in both men and women, the disease is inherited in both autosomal dominant and autosomal recessive types, there are sporadic cases of the disease due to de novomutations, as well as X-linked forms. The term “osteogenesis imperfecta” was coined by W. Vrolick in the 1840s. The first classification of the disease was made in 1979 and has been repeatedly reviewed due to the identification of the molecular cause of the disease and the discovery of new mechanisms for the development of osteogenesis imperfecta. In the early 1980s, mutations in two genes of collagen type I (COL1A1and COL1A2) were first associated with an autosomal dominant inheritance type of osteogenesis imperfecta. Since then, 18 more genes have been identified whose products are involved in the formation and mineralization of bone tissue.  The degree of genetic heterogeneity of the disease has not yet been determined, researchers continue to identify new genes involved in its pathogenesis, the number of which has reached 20. In the last decade, it has become  known that autosomal recessive, autosomal dominant and X-linked mutations in a wide range of genes, encoding  proteins that are involved in the synthesis of type I collagen, its processing, secretion and post-translational modification, as well as in proteins that regulate the differentiation and activity of bone-forming cells, cause imperfect  osteogenesis. A large number of causative genes complicated the classical classification of the disease and, due to new advances in the molecular basis of the disease, the classification of the disease is constantly being improved.  In this review, we systematized and summarized information on the results of studies in the field of clinical and genetic aspects of osteogenesis imperfecta and reflected the current state of the classification criteria for diagnosing the disease.


2020 ◽  
Author(s):  
Celia Agusti-Ridaura ◽  
Marit Jørgensen Bakke ◽  
Kari Olli Helgesen ◽  
Arvind YM Sundaram ◽  
Sigrid Jørgensen Bakke ◽  
...  

Abstract Background: Hydrogen peroxide (H2O2) is one of the delousing agents used to control sea lice infestations in salmonid aquaculture. However, some Lepeophtheirus salmonis populations have developed resistance towards H2O2. An increased gene expression and activity of catalase, an enzyme that breaks down H2O2, have been detected in resistant lice, being therefore introduced as a resistance marker in the salmon industry. In the present study the aim was to validate the use of catalase expression as a marker and to identify new markers related to H2O2 resistance in L. salmonis.Methods: A sensitive and an H2O2 resistant laboratory strain (P0 generation, not exposed to H2O2 for several years) were batch crossed to generate a cohort with a wide range of H2O2 sensitivities (F2 generation). F2 adult females were then exposed to H2O2 to separate sensitive and resistant individuals. Those F2 lice, the P0 lice and field-collected resistant lice (exposed to H2O2 in the field) were used in an RNA sequencing study.Results: Catalase was up-regulated in resistant lice exposed to H2O2 compared to sensitive lice. This was, however, not the case for unexposed resistant P0 lice. Several other genes were found differentially expressed between sensitive and resistant lice, but most of them seemed to be related to H2O2 exposure. However, five genes were consistently up- or down- regulated in the resistant lice independent of exposure history. The up-regulated genes were: one gene in the DNA polymerase family, one gene encoding a Nesprin-like protein and an unannotated gene encoding a small protein. The down-regulated genes encoded endoplasmic reticulum resident protein 29 and an aquaporin (Glp1_v2).Conclusions: Catalase expression seems to be induced by H2O2 exposure, since it was not up-regulated in unexposed resistant lice. This may pose a challenge for its use as a resistance marker. The five new genes associated with resistance are put forward as potential good, complementary markers. The most promising was Glp1_v2, an aquaglyceroporin that may serve as a passing channel for H2O2. Lower channel number can reduce the influx or distribution of H2O2 in the salmon louse, being directly involved in the resistance mechanism.


2012 ◽  
Vol 23 (16) ◽  
pp. 3069-3078 ◽  
Author(s):  
Qi Zhang ◽  
Qin Liu ◽  
Chrissy Austin ◽  
Iain Drummond ◽  
Eric A. Pierce

In our effort to understand genetic disorders of the photoreceptor cells of the retina, we have focused on intraflagellar transport in photoreceptor sensory cilia. From previous mouse proteomic data we identified a cilia protein Ttc26, orthologue of dyf-13 in Caenorhabditis elegans, as a target. We localized Ttc26 to the transition zone of photoreceptor and to the transition zone of cilia in cultured murine inner medullary collecting duct 3 (mIMCD3) renal cells. Knockdown of Ttc26 in mIMCD3 cells produced shortened and defective primary cilia, as revealed by immunofluorescence and scanning electron microscopy. To study Ttc26 function in sensory cilia in vivo, we utilized a zebrafish vertebrate model system. Morpholino knockdown of ttc26 in zebrafish embryos caused ciliary defects in the pronephric kidney at 27 h postfertilization and distension/dilation of pronephros at 5 d postfertilization (dpf). In the eyes, the outer segments of photoreceptor cells appeared shortened or absent, whereas cellular lamination appeared normal in retinas at 5 dpf. This suggests that loss of ttc26 function prevents normal ciliogenesis and differentiation in the photoreceptor cells, and that ttc26 is required for normal development and differentiation in retina and pronephros. Our studies support the importance of Ttc26 function in ciliogenesis and suggest that screening for TTC26 mutations in human ciliopathies is justified.


1992 ◽  
Vol 84 (4) ◽  
pp. 561-567 ◽  
Author(s):  
Poul E. Jensen ◽  
Michael Kristensen ◽  
Tine Hoff ◽  
Jan Lehmbeck ◽  
Bjarne M. Stummann ◽  
...  

2020 ◽  
Vol 20 (12) ◽  
pp. 1074-1092 ◽  
Author(s):  
Rammohan R.Y. Bheemanaboina

Phosphoinositide 3-kinases (PI3Ks) are a family of ubiquitously distributed lipid kinases that control a wide variety of intracellular signaling pathways. Over the years, PI3K has emerged as an attractive target for the development of novel pharmaceuticals to treat cancer and various other diseases. In the last five years, four of the PI3K inhibitors viz. Idelalisib, Copanlisib, Duvelisib, and Alpelisib were approved by the FDA for the treatment of different types of cancer and several other PI3K inhibitors are currently under active clinical development. So far clinical candidates are non-selective kinase inhibitors with various off-target liabilities due to cross-reactivities. Hence, there is a need for the discovery of isoform-selective inhibitors with improved efficacy and fewer side-effects. The development of isoform-selective inhibitors is essential to reveal the unique functions of each isoform and its corresponding therapeutic potential. Although the clinical effect and relative benefit of pan and isoformselective inhibition will ultimately be determined, with the development of drug resistance and the demand for next-generation inhibitors, it will continue to be of great significance to understand the potential mechanism of isoform-selectivity. Because of the important role of type I PI3K family members in various pathophysiological processes, isoform-selective PI3K inhibitors may ultimately have considerable efficacy in a wide range of human diseases. This review summarizes the progress of isoformselective PI3K inhibitors in preclinical and early clinical studies for anticancer and other various diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alfredo Sierra-Cristancho ◽  
Luis González-Osuna ◽  
Daniela Poblete ◽  
Emilio A. Cafferata ◽  
Paola Carvajal ◽  
...  

AbstractThis study aimed to analyze the root anatomy and root canal system morphology of mandibular first premolars in a Chilean population. 186 teeth were scanned using micro-computed tomography and reconstructed three-dimensionally. The root canal system morphology was classified using both Vertucci’s and Ahmed’s criteria. The radicular grooves were categorized using the ASUDAS system, and the presence of Tomes’ anomalous root was associated with Ahmed’s score. A single root canal was identified in 65.05% of teeth, being configuration type I according to Vertucci’s criteria and code 1MP1 according to Ahmed’s criteria. Radicular grooves were observed in 39.25% of teeth. The ASUDAS scores for radicular grooves were 60.75%, 13.98%, 12.36%, 10.22%, 2.15%, and 0.54%, from grade 0 to grade 5, respectively. The presence of Tomes’ anomalous root was identified only in teeth with multiple root canals, and it was more frequently associated with code 1MP1–2 of Ahmed’s criteria. The root canal system morphology of mandibular first premolars showed a wide range of anatomical variations in the Chilean population. Teeth with multiple root canals had a higher incidence of radicular grooves, which were closely related to more complex internal anatomy. Only teeth with multiple root canals presented Tomes’ anomalous root.


2021 ◽  
Vol 11 (6) ◽  
pp. 526
Author(s):  
Yejin Lee ◽  
Youn Jung Kim ◽  
Hong-Keun Hyun ◽  
Jae-Cheoun Lee ◽  
Zang Hee Lee ◽  
...  

Hereditary dentin defects can be categorized as a syndromic form predominantly related to osteogenesis imperfecta (OI) or isolated forms without other non-oral phenotypes. Mutations in the gene encoding dentin sialophosphoprotein (DSPP) have been identified to cause dentinogenesis imperfecta (DGI) Types II and III and dentin dysplasia (DD) Type II. While DGI Type I is an OI-related syndromic phenotype caused mostly by monoallelic mutations in the genes encoding collagen type I alpha 1 chain (COL1A1) and collagen type I alpha 2 chain (COL1A2). In this study, we recruited families with non-syndromic dentin defects and performed candidate gene sequencing for DSPP exons and exon/intron boundaries. Three unrelated Korean families were further analyzed by whole-exome sequencing due to the lack of the DSPP mutation, and heterozygous COL1A2 mutations were identified: c.3233G>A, p.(Gly1078Asp) in Family 1 and c.1171G>A, p.(Gly391Ser) in Family 2 and 3. Haplotype analysis revealed different disease alleles in Families 2 and 3, suggesting a mutational hotspot. We suggest expanding the molecular genetic etiology to include COL1A2 for isolated dentin defects in addition to DSPP.


Sign in / Sign up

Export Citation Format

Share Document