Heterogeneous clinical spectrum of DNAJC12-deficient hyperphenylalaninemia: from attention deficit to severe dystonia and intellectual disability

2017 ◽  
Vol 55 (4) ◽  
pp. 249-253 ◽  
Author(s):  
Francjan J van Spronsen ◽  
Nastassja Himmelreich ◽  
Véronique Rüfenacht ◽  
Nan Shen ◽  
Danique van Vliet ◽  
...  

BackgroundAutosomal recessive mutations in DNAJC12, encoding a cochaperone of HSP70 with hitherto unknown function, were recently described to lead to hyperphenylalaninemia, central monoamine neurotransmitter (dopamine and serotonin) deficiency, dystonia and intellectual disability in six subjects affected by homozygous variants.ObjectivePatients exhibiting hyperphenylalaninemia in whom deficiencies in hepatic phenylalanine hydroxylase and tetrahydrobiopterin cofactor metabolism had been excluded were subsequently analysed for DNAJC12 variants.MethodsTo analyse DNAJC12, genomic DNA from peripheral blood (Sanger sequencing), as well as quantitative messenger RNA (Real Time Quantitative Polymerase Chain Reaction (RT-qPCR)) and protein expression (Western blot) from primary skin fibroblasts were performed.ResultsWe describe five additional patients from three unrelated families with homozygosity/compound heterozygosity in DNAJC12 with three novel variants: c.85delC/p.Gln29Lysfs*38, c.596G>T/p.*199Leuext*42 and c.214C>T/p.(Arg72*). In contrast to previously reported DNAJC12-deficient patients, all five cases showed a very mild neurological phenotype. In two subjects, cerebrospinal fluid and primary skin fibroblasts were analysed showing similarly low 5-hydroxyindolacetic acid and homovanillic acid concentrations but more reduced expressions of mRNA and DNAJC12 compared with previously described patients. All patients responded to tetrahydrobiopterin challenge by lowering blood phenylalanine levels.ConclusionsDNAJC12 deficiency appears to result in a more heterogeneous neurological phenotype than originally described. While early identification and institution of treatment with tetrahydrobiopterin and neurotransmitter precursors is crucial to ensure optimal neurological outcome in DNAJC12-deficient patients with a severe phenotype, optimal treatment for patients with a milder phenotype remains to be defined.

Author(s):  
Meena Balasubramanian ◽  
Alexander J. M. Dingemans ◽  
Shadi Albaba ◽  
Ruth Richardson ◽  
Thabo M. Yates ◽  
...  

AbstractWitteveen-Kolk syndrome (OMIM 613406) is a recently defined neurodevelopmental syndrome caused by heterozygous loss-of-function variants in SIN3A. We define the clinical and neurodevelopmental phenotypes related to SIN3A-haploinsufficiency in 28 unreported patients. Patients with SIN3A variants adversely affecting protein function have mild intellectual disability, growth and feeding difficulties. Involvement of a multidisciplinary team including a geneticist, paediatrician and neurologist should be considered in managing these patients. Patients described here were identified through a combination of clinical evaluation and gene matching strategies (GeneMatcher and Decipher). All patients consented to participate in this study. Mean age of this cohort was 8.2 years (17 males, 11 females). Out of 16 patients ≥ 8 years old assessed, eight (50%) had mild intellectual disability (ID), four had moderate ID (22%), and one had severe ID (6%). Four (25%) did not have any cognitive impairment. Other neurological symptoms such as seizures (4/28) and hypotonia (12/28) were common. Behaviour problems were reported in a minority. In patients ≥2 years, three were diagnosed with Autism Spectrum Disorder (ASD) and four with Attention Deficit Hyperactivity Disorder (ADHD). We report 27 novel variants and one previously reported variant. 24 were truncating variants; three were missense variants and one large in-frame gain including exons 10–12.


2019 ◽  
Vol 26 (12) ◽  
pp. 1618-1625 ◽  
Author(s):  
Xue Shen ◽  
Hua Duan ◽  
Sha Wang ◽  
Wei Hong ◽  
Yu-Yan Wang ◽  
...  

The myometrium, especially the junctional zone (JZ), is now well documented to have a role in the pathogenesis of adenomyosis. Cannabinoid receptors have been shown to participate in the establishment of endometriosis and its pain perception. However, its relation to adenomyosis has not been identified yet. The aim of this study was to investigate the expression of cannabinoid receptor type I (CB1) and type II (CB2) in myometrium of uteri with and without adenomyosis and determine the correlation between their levels and clinical parameters of adenomyosis. We collected tissue samples of JZ and the outer myometrium from 45 premenopausal women with adenomyosis and 34 women without adenomyosis. CB1 and CB2 messenger RNA (mRNA) and protein expression levels were evaluated by the use of Western blotting and real-time quantitative polymerase chain reaction from all samples. Clinical information on the severity of dysmenorrhea and other data were collected. We found both CB1 and CB2 mRNA and protein levels in women with adenomyosis were significantly higher than those of controls, and CB1 expression levels in JZ were positively correlated with the severity of dysmenorrhea. These data suggest that cannabinoid receptor CB1 may be involved in the pathogenesis of dysmenorrhea in adenomyosis and may be a potential therapeutic target.


2017 ◽  
Vol 102 (12) ◽  
pp. 4588-4595 ◽  
Author(s):  
Natalia Hetemäki ◽  
Hanna Savolainen-Peltonen ◽  
Matti J Tikkanen ◽  
Feng Wang ◽  
Hanna Paatela ◽  
...  

Abstract Context In postmenopausal women, adipose tissue (AT) levels of estrogens exceed circulating concentrations. Although increased visceral AT after menopause is related to metabolic diseases, little is known about differences in estrogen metabolism between different AT depots. Objective We compared concentrations of and metabolic pathways producing estrone and estradiol in abdominal subcutaneous and visceral AT in postmenopausal women. Design, Setting, Patients, and Interventions AT and serum samples were obtained from 37 postmenopausal women undergoing surgery for nonmalignant gynecological reasons. Serum and AT estrone, estradiol, and serum estrone sulfate (E1S) concentrations were quantitated using liquid chromatography-tandem mass spectrometry. Activity of steroid sulfatase and reductive 17β-hydroxysteroid dehydrogenase enzymes was measured using radiolabeled precursors. Messenger RNA (mRNA) expression of estrogen-converting enzymes was analyzed by real-time reverse transcription quantitative polymerase chain reaction. Results Estrone concentration was higher in visceral than subcutaneous AT (median, 928 vs 706 pmol/kg; P = 0.002) and correlated positively with body mass index (r = 0.46; P = 0.011). Both AT depots hydrolyzed E1S to estrone, and visceral AT estrone and estradiol concentrations correlated positively with serum E1S. Compared with visceral AT, subcutaneous AT produced more estradiol from estrone (median rate of estradiol production, 1.02 vs 0.57 nmol/kg AT/h; P = 0.004). In visceral AT, the conversion of estrone to estradiol increased with waist circumference (r = 0.65; P = 0.022), and estradiol concentration correlated positively with mRNA expression of HSD17B7 (r = 0.76; P = 0.005). Conclusions Both estrone and estradiol production in visceral AT increased with adiposity, but estradiol was produced more effectively in subcutaneous fat. Both AT depots produced estrone from E1S. Increasing visceral adiposity could increase overall estrogen exposure in postmenopausal women.


2020 ◽  
Vol 4 (20) ◽  
pp. 5118-5132 ◽  
Author(s):  
Harald Herrmann ◽  
Irina Sadovnik ◽  
Gregor Eisenwort ◽  
Thomas Rülicke ◽  
Katharina Blatt ◽  
...  

Abstract In an attempt to identify novel markers and immunological targets in leukemic stem cells (LSCs) in acute myeloid leukemia (AML) and chronic myeloid leukemia (CML), we screened bone marrow (BM) samples from patients with AML (n = 274) or CML (n = 97) and controls (n = 288) for expression of cell membrane antigens on CD34+/CD38− and CD34+/CD38+ cells by multicolor flow cytometry. In addition, we established messenger RNA expression profiles in purified sorted CD34+/CD38− and CD34+/CD38+ cells using gene array and quantitative polymerase chain reaction. Aberrantly expressed markers were identified in all cohorts. In CML, CD34+/CD38− LSCs exhibited an almost invariable aberration profile, defined as CD25+/CD26+/CD56+/CD93+/IL-1RAP+. By contrast, in patients with AML, CD34+/CD38− cells variably expressed “aberrant” membrane antigens, including CD25 (48%), CD96 (40%), CD371 (CLL-1; 68%), and IL-1RAP (65%). With the exception of a subgroup of FLT3 internal tandem duplication–mutated patients, AML LSCs did not exhibit CD26. All other surface markers and target antigens detected on AML and/or CML LSCs, including CD33, CD44, CD47, CD52, CD105, CD114, CD117, CD133, CD135, CD184, and roundabout-4, were also found on normal BM stem cells. However, several of these surface targets, including CD25, CD33, and CD123, were expressed at higher levels on CD34+/CD38− LSCs compared with normal BM stem cells. Moreover, antibody-mediated immunological targeting through CD33 or CD52 resulted in LSC depletion in vitro and a substantially reduced LSC engraftment in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. Together, we have established surface marker and target expression profiles of AML LSCs and CML LSCs, which should facilitate LSC enrichment, diagnostic LSC phenotyping, and development of LSC-eradicating immunotherapies.


2020 ◽  
Vol 222 (Supplement_2) ◽  
pp. S84-S95
Author(s):  
Dina M Tawfik ◽  
Laurence Vachot ◽  
Adeline Bocquet ◽  
Fabienne Venet ◽  
Thomas Rimmelé ◽  
...  

Abstract Background Critical illness such as sepsis is a life-threatening syndrome defined as a dysregulated host response to infection and is characterized by patients exhibiting impaired immune response. In the field of diagnosis, a gap still remains in identifying the immune profile of critically ill patients in the intensive care unit (ICU). Methods A new multiplex immune profiling panel (IPP) prototype was assessed for its ability to semiquantify messenger RNA immune-related markers directly from blood, using the FilmArray System, in less than an hour. Samples from 30 healthy volunteers were used for the technical assessment of the IPP tool. Then the tool was clinically assessed using samples from 10 healthy volunteers and 20 septic shock patients stratified using human leukocyte antigen–DR expression on monocytes (mHLA-DR). Results The IPP prototype consists of 16 biomarkers that target the immune response. The majority of the assays had a linear expression with different RNA inputs and a coefficient of determination (R2) > 0.8. Results from the IPP pouch were comparable to standard quantitative polymerase chain reaction and the assays were within the limits of agreement in Bland–Altman analysis. Quantification cycle values of the target genes were normalized against reference genes and confirmed to account for the different cell count and technical variability. The clinical assessment of the IPP markers demonstrated various gene modulations that could distinctly differentiate 3 profiles: healthy volunteers, intermediate mHLA-DR septic shock patients, and low mHLA-DR septic shock patients. Conclusions The use of IPP showed great potential for the development of a fully automated, rapid, and easy-to-use immune profiling tool. The IPP tool may be used in the future to stratify critically ill patients in the ICU according to their immune status. Such stratification will enable personalized management of patients and guide treatments to avoid secondary infections and lower mortality.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Sayeeda Hana ◽  
Deepak karthik ◽  
Jingxuan Shan ◽  
Stephany El Hayek ◽  
Lotfi Chouchane ◽  
...  

Recessive mutations in the TMTC3 gene have been reported in thirteen patients to date exhibiting development delay, intellectual disability (ID), seizures, and muscular hypotonia, accompanied occasionally by neuronal migration defects expressed as either cobblestone lissencephaly or periventricular hypertopia. Here, we report a new case of a TMTC3-related syndrome in a Lebanese family with two affected siblings showing severe psychomotor retardation, intellectual disability, microcephaly, absence of speech, muscular hypotonia, and seizures. Whole exome sequencing revealed a homozygous pathogenic variant c.211 C > T (p.R71C) in the TMTC3 gene in both siblings. A review of the literature on TMTC3-related syndrome and its causal mutations is provided.


2015 ◽  
Vol 9s2 ◽  
pp. JEN.S25524 ◽  
Author(s):  
Joshua A. Suhl ◽  
Stephen T. Warren

Fragile X syndrome is a monogenic disorder and a common cause of intellectual disability. Despite nearly 25 years of research on FMR1, the gene underlying the syndrome, very few pathological mutations other than the typical CGG-repeat expansion have been reported. This is in contrast to other X-linked, monogenic, intellectual disability disorders, such as Rett syndrome, where many point mutations have been validated as causative of the disorder. As technology has improved and significantly driven down the cost of sequencing, allowing for whole genes to be sequenced with relative ease, in-depth sequencing studies on FMR1 have recently been performed. These studies have led to the identification of novel variants in FMR1, where some of which have been functionally evaluated and are likely pathogenic. In this review, we discuss recently identified FMR1 variants, the ways these novel variants cause dysfunction, and how they reveal new regulatory mechanisms and functionalities of the gene.


2020 ◽  
Vol 98 (9) ◽  
Author(s):  
Chunchi Yan ◽  
Minmeng Zhao ◽  
Shuo Li ◽  
Tongjun Liu ◽  
Cheng Xu ◽  
...  

Abstract Goose fatty liver may have a unique protective mechanism as it does not show a pathological injury even in the case of severe steatosis. Although neural precursor cell-expressed developmentally downregulated gene 4 (NEDD4) participates in repair and regeneration of injured liver through its target proteins, its role in nonalcoholic fatty liver disease remains unknown. Using quantitative polymerase chain reaction (PCR) and immunoblot analyses, here, we found that the messenger RNA (mRNA) and protein expressions of NEDD4 were induced in goose fatty liver compared with normal liver. The mRNA expression of the gene of phosphate and tension homology deleted on chromosome ten (PTEN) and insulin-like growth factor 1 receptor (IGF1R) was also induced in goose fatty liver; however, their protein expression was or tended to be suppressed. Moreover, the co-immunoprecipitation analysis indicated that there was a physical association between NEDD4 and PTEN in goose liver, which was consistent with the ubiquitination of PTEN in goose fatty liver. Furthermore, NEDD4 overexpression in goose primary hepatocytes suppressed the PTEN and IGF1R protein levels without a significant effect on their mRNA expression. In conclusion, the increased expression of NEDD4 leads to the degradation of PTEN and IGF1R proteins through ubiquitination in goose fatty liver, suggesting that NEDD4 may protect goose fatty liver from severe steatosis-associated injury via its target proteins during the development of goose fatty liver.


Sign in / Sign up

Export Citation Format

Share Document