Effects of adipokine zinc-α2-glycoprotein on adipose tissue metabolism after dexamethasone treatment

2019 ◽  
Vol 44 (1) ◽  
pp. 83-89
Author(s):  
Yu Qiao ◽  
Guoqiang Fan ◽  
Jun Guo ◽  
Shixing Gao ◽  
Ruqian Zhao ◽  
...  

Zinc-α2-glycoprotein (ZAG) has been demonstrated to play a role in stimulating lipid mobilization under normal conditions. However, further studies are required to determine whether ZAG overexpression can alleviate the reduction in plasma lipid levels under stress conditions. In the present study, we investigated the effects of ZAG on lipometabolism in white adipose tissue (WAT) after dexamethasone (DEX) stimulation using C57BL/6 male mice as the experimental models. Transcript and protein levels of genes associated with the β-adrenoreceptor (β-AR)/cyclic adenosine monophosphate/protein kinase a (PKA) pathway, lipid mobilization, and energy metabolism were determined by quantitative real-time polymerase chain reaction and Western blotting. Plasma levels of nonesterified fatty acid (NEFA) were measured using an automatic biochemical analyzer. Results indicated that plasma NEFA levels were decreased in the DEX group, but NEFA levels were rescued by ZAG overexpression. ZAG overexpression resulted in the upregulation of β3-AR and phosphorylated PKA protein relative to those of the DEX group. Analysis of lipometabolism showed that protein levels of phosphorylated hormone-sensitive lipase was reduced upon DEX treatment but were restored by ZAG overexpression. For energy metabolism, ZAG significantly upregulated the protein expression of carnitine palmitoyltransferase1a and cytochrome c oxidase subunit 1 relative to those of the DEX group. In conclusion, ZAG could alleviate DEX-induced decrease in plasma NEFA levels and this could be associated with the promoting lipid mobilization in WAT.

Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1090
Author(s):  
Ursula Abou-Rjeileh ◽  
G. Andres Contreras

Lipid mobilization in adipose tissues, which includes lipogenesis and lipolysis, is a paramount process in regulating systemic energy metabolism. Reactive oxygen and nitrogen species (ROS and RNS) are byproducts of cellular metabolism that exert signaling functions in several cellular processes, including lipolysis and lipogenesis. During lipolysis, the adipose tissue generates ROS and RNS and thus requires a robust antioxidant response to maintain tight regulation of redox signaling. This review will discuss the production of ROS and RNS within the adipose tissue, their role in regulating lipolysis and lipogenesis, and the implications of antioxidants on lipid mobilization.


1998 ◽  
Vol 83 (2) ◽  
pp. 626-631 ◽  
Author(s):  
Jaswinder S. Samra ◽  
Mo L. Clark ◽  
Sandy M. Humphreys ◽  
Ian A. MacDonald ◽  
Peter A. Bannister ◽  
...  

Cortisol is known to increase whole body lipolysis, yet chronic hypercortisolemia results in increased fat mass. The main aim of the study was to explain these two apparently opposed observations by examining the acute effects of hypercortisolemia on lipolysis in subcutaneous adipose tissue and in the whole body. Six healthy subjects were studied on two occasions. On one occasion hydrocortisone sodium succinate was infused iv to induce hypercortisolemia (mean plasma cortisol concentrations, 1500 ± 100 vs. 335± 25 nmol/L; P < 0.001); on the other occasion (control study) no intervention was made. Lipolysis in the sc adipose tissue of the anterior abdominal wall was studied by measurement of arterio-venous differences, and lipolysis in the whole body was studied by constant infusion of[ 1,2,3-2H5]glycerol for measurement of the systemic glycerol appearance rate. Hypercortisolemia led to significantly increased arterialized plasma nonesterified fatty acid (NEFA; P < 0.01) and blood glycerol concentrations (P < 0.05), with an increase in systemic glycerol appearance (P < 0.05). However, in sc abdominal adipose tissue, hypercortisolemia decreased veno-arterialized differences for NEFA (P < 0.05) and reduced NEFA efflux (P < 0.05). This reduction was attributable to decreased intracellular lipolysis (P < 0.05), reflecting decreased hormone-sensitive lipase action in this adipose depot. Hypercortisolemia caused a reduction in arterialized plasma TAG concentrations (P < 0.05), but without a significant change in the local extraction of TAG (presumed to reflect the action of adipose tissue lipoprotein lipase). There was no significant difference in plasma insulin concentrations between the control and hypercortisolemia study. Site-specific regulation of the enzymes of intracellular lipolysis (hormone-sensitive lipase) and intravascular lipolysis (lipoprotein lipase) may explain the ability of acute cortisol treatment to increase systemic glycerol and NEFA appearance rates while chronically promoting net central fat deposition.


1996 ◽  
Vol 271 (3) ◽  
pp. E541-E546 ◽  
Author(s):  
J. S. Samra ◽  
M. L. Clark ◽  
S. M. Humphreys ◽  
I. A. Macdonald ◽  
K. N. Frayn

We studied changes in lipid metabolism in adipose tissue in 24 healthy adults during early starvation (14-20 h) by cannulating the venous drainage of the subcutaneous adipose tissue of the anterior abdominal wall. Net nonesterified fatty acid (NEFA) efflux from adipose tissue increased steadily from 1,790 +/- 300 to 2,360 +/- 290 nmol.100 g-1.min-1 (P = 0.03), due to increasing transcapillary efflux of NEFA (release from adipocytes; P < 0.01). The reesterification rate after an overnight fast was close to zero; thus, reduction in the rate of reesterification played no part in the increased transcapillary efflux of NEFA. One-quarter of the net efflux of NEFA after an overnight fast arose from the action of lipoprotein lipase (LPL), although this relative contribution decreased during the study (P < 0.02). The increased transcapillary efflux of NEFA reflected a significant increase in the rate of action of hormone-sensitive lipase (HSL; P = 0.03). There was a strong relationship between mean arterial NEFA concentration and net NEFA release from adipose tissue (P < 0.001), implying that the particular depot studied reflects the behavior of adipose tissue as a whole. Thus the increasing efflux of NEFA from adipose tissue observed during early starvation is due to an increased rate of action of HSL, which may in turn be regulated by a fall in the plasma insulin concentration.


PPAR Research ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Yong-Jik Lee ◽  
Yoo-Na Jang ◽  
Yoon-Mi Han ◽  
Hyun-Min Kim ◽  
Jong-Min Jeong ◽  
...  

Aster glehniis well known for its therapeutic properties. This study was performed to investigate the effects ofA. glehnion nonalcoholic fatty liver disease (NAFLD) in atherosclerotic condition, by determining the levels of biomarkers related to lipid metabolism and inflammation in serum, liver, and adipose tissue. Body and abdominal adipose tissue weights and serum triglyceride level decreased in all groups treated withA. glehni. Serum adiponectin concentration and protein levels of peroxisome proliferator-activated receptorδ, 5′ adenosine monophosphate-activated protein kinase, acetyl-CoA carboxylase, superoxide dismutase, and PPARγcoactivator 1-alpha in liver tissues increased in the groups treated withA. glehni. Conversely, protein levels of ATP citrate lyase, fatty acid synthase, tumor necrosis factorα, and 3-hydroxy-3-methylglutaryl-CoA reductase and the concentrations of interleukin 6 and reactive oxygen species decreased uponA. glehni. Triglyceride concentration in the liver was lower in mice treated withA. glehnithan in control mice. Lipid accumulation in HepG2 and 3T3-L1 cells decreased uponA. glehnitreatment; this effect was suppressed in the presence of the PPARδantagonist, GSK0660. Our findings suggest thatA. glehniextracts may ameliorate NAFLD through regulation of PPARδ, adiponectin, and the related subgenes.


2011 ◽  
Vol 96 (8) ◽  
pp. E1293-E1297 ◽  
Author(s):  
Thomas S. Nielsen ◽  
Mikkel H. Vendelbo ◽  
Niels Jessen ◽  
Steen B. Pedersen ◽  
Jens O. Jørgensen ◽  
...  

Abstract Context: Fasting and exercise are characterized by increased lipolysis, but the underlying mechanisms are not fully understood. Objective: The study was designed to test whether fasting and exercise affect mRNA and protein levels of adipose triglyceride lipase (ATGL) and G(0)/G(1) switch gene 2 (G0S2), a recently discovered ATGL inhibitor, in humans. Design and Participants: We studied eight healthy men (age, 25.5 ± 4.3 yr) for 6 h (a 4-h basal and a 2-h clamp period) on three occasions in a randomized crossover design: 1) in the basal state and after; 2) 72-h fasting; and 3) 1-h exercise (65% VO2max). Subcutaneous abdominal adipose tissue (AT) biopsies were taken at t = 30 and 270 min. Setting: The study was conducted at a university hospital research unit. Results: Circulating free fatty acids and GH were increased, and C-peptide was decreased by both fasting and exercise. During fasting, insulin failed to suppress free fatty acid levels, suggesting AT insulin resistance. ATGL protein was increased 44% (P &lt; 0.001), and G0S2 mRNA and protein were decreased 56% (P = 0.02) and 54% (P = 0.01), respectively, after fasting, but both ATGL and G0S2 were unaffected by exercise. Protein levels of hormone-sensitive lipase and comparative gene identification-58 were unaffected throughout. Conclusions: We found increased AT content of ATGL and decreased protein and mRNA content of the ATGL inhibitor G0S2, suggesting increased ATGL activity during fasting, but not after short-term exercise. These findings are compatible with the notion that the ATGL-G0S2 complex is an important long-term regulator of lipolysis under physiological conditions such as fasting in humans.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Aaser M. Abdelazim ◽  
Tamer Ahmed Ismail ◽  
Mosleh M. Abumaghaid ◽  
Islam M. Saadaldin

In the present study, we examined the synergetic effect of forskolin and mevastatin administration on lipid profile and lipid metabolism in omental adipose tissue in dyslipidemic rats. The study was conducted on forty male albino rats. The rats were randomly classified into four main groups of ten animals in each group as follows: group A, served as control nontreated; group B, rats that received Triton WR 1339 (500 mg/kg); group C, rats that received Triton WR 1339 with forskolin (100% FSK extract 0.5 mg/kg/day) for four weeks; and group D, dyslipidemic rats received both mevastatin and forskolin. At the end of the experimental period, blood and omental adipose tissue samples were collected, preserved, and used for biochemical determination of lipid profile and mRNA expression profile of adenylate cyclase (AC), hormone-sensitive lipase, respectively (HSL), and adenosine monophosphate-activated protein kinase (AMPK). The results showed a significant decline in the serum concentration of total cholesterol, LDL-cholesterol, and triglycerides, although there was a significant increase in serum levels of HDL-cholesterol and glycerol in rats received forskolin alone or with mevastatin when compared with control and dyslipidemic groups. The mRNA expression levels of AC, HSL, and AMPK were significantly increased in omental adipose tissue of rats received forskolin when compared with other groups. In conclusion, forskolin acts synergistically with mevastatin to lower lipid profile and improve lipid metabolism in dyslipidemic rats through upregulation of AMPK expression.


1999 ◽  
Vol 276 (2) ◽  
pp. E241-E248 ◽  
Author(s):  
Kevin Evans ◽  
Mo L. Clark ◽  
Keith N. Frayn

We have studied the fate of lipoprotein lipase (LPL)-derived fatty acids by measuring arteriovenous differences across subcutaneous adipose tissue and skeletal muscle in vivo. Six subjects were fasted overnight and were then given 40 g of triacylglycerol either orally or as an intravenous infusion over 4 h. Intracellular lipolysis (hormone-sensitive lipase action; HSL) was suppressed after both oral and intravenous fat loads ( P < 0.001). Insulin, a major regulator of HSL activity, showed little change after either oral or intravenous fat load, suggesting that suppression of HSL action occurred independently of insulin. The rate of action of LPL (measured as triacylglycerol extraction) increased with both oral and intravenous fat loads in adipose tissue ( P = 0.002) and skeletal muscle ( P = 0.001). There was increased escape of LPL-derived fatty acids into the circulation from adipose tissue, shown by lack of reesterification of fatty acids. There was no release into the circulation of LPL-derived fatty acids from skeletal muscle. These results suggest that insulin is not essential for HSL suppression or increased triacylglycerol clearance but is important in reesterification of fatty acids in adipose tissue but not uptake by skeletal muscle, thus affecting fatty acid partitioning between adipose tissue and the circulation, postprandial nonesterified fatty acid concentrations, and hepatic very low density lipoprotein secretion.


2021 ◽  
Vol 11 (9) ◽  
pp. 874
Author(s):  
Sunghwun Kang ◽  
Kyu-Min Park ◽  
Kun-Young Sung ◽  
Yuning Yuan ◽  
Seung-Taek Lim

Physical exercise may stimulate lipolytic activity within adipose tissue. Furthermore, resistance exercise may contribute to the more efficient reduction in adipose tissue mass and prevent the accumulation thereof in obese women. The purpose of this study was to examine the effects of regular resistance exercise for 12 weeks on the lipolysis pathway in women with obesity. Twenty-three pre- and postmenopausal women with body fat percentages of 30% or more were divided into the premenopausal group (n = 9) and the postmenopausal group (n = 14). All subjects participated in resistance exercise training for 12 weeks. Anthropometric and physical fitness tests were performed on all participants. Protein analyses were performed on extracted subcutaneous fatty tissue, and changes in the relevant protein levels in the samples were analyzed by Western blotting. All serum samples were submitted for enzyme-linked immunosorbent assay measurements of adipocyte factors. After 12 weeks, the adipose triglyceride lipase, monoacylglycerol lipase, and perilipin1 protein levels were significantly lower in the postmenopausal group than in the premenopausal group. The hormone-sensitive lipase protein levels were significantly higher in the postmenopausal group than in the premenopausal group. In addition, leptin concentrations were significantly decreased after resistance exercise in the postmenopausal group. Adiponectin concentrations were significantly increased after resistance exercise in both groups. These findings indicate that regular resistance exercise is effective in reducing the weight and body fat of obese premenopausal women, and in the secretion of adiponectin. On the other hand, postmenopausal women were found to have redeced weight and body fat, and were found to be positive for the secretion of adipokine factors. In addition, positive changes in lipolysis pathway factors in adipose tissue promote lipid degradation and reduce fat mass. Thus, regular resistance exercise shows positive changes in the lipolysis pathway more effectively in weight and body fat reduction in postmenopausal women than in premenopausal women.


2005 ◽  
Vol 289 (5) ◽  
pp. E849-E856 ◽  
Author(s):  
André C. Carpentier ◽  
Frédérique Frisch ◽  
Denis Cyr ◽  
Philippe Généreux ◽  
Bruce W. Patterson ◽  
...  

During the fasting state, insulin reduces nonesterified fatty acid (NEFA) appearance in the systemic circulation mostly by suppressing intracellular lipolysis in the adipose tissue. In the postprandial state, insulin may also control NEFA appearance through enhanced trapping into the adipose tissue of NEFA derived from intravascular triglyceride lipolysis. To determine the contribution of suppression of intracellular lipolysis in the modulation of plasma NEFA metabolism by insulin during enhanced intravascular triglyceride lipolysis, 10 healthy nonobese subjects underwent pancreatic clamps at fasting vs. high physiological insulin level with intravenous infusion of heparin plus Intralipid. Nicotinic acid was administered orally during the last 2 h of each 4-h clamp to inhibit intracellular lipolysis and assess insulin’s effect on plasma NEFA metabolism independently of its effect on intracellular lipolysis. Stable isotope tracers of palmitate, acetate, and glycerol were used to assess plasma NEFA metabolism and total triglyceride lipolysis in each participant. The glycerol appearance rate was similar during fasting vs. high insulin level, but plasma NEFA levels were significantly lowered by insulin. Nicotinic acid significantly blunted the insulin-mediated suppression of plasma palmitate appearance and oxidation rates by ∼60 and ∼70%, respectively. In contrast, nicotinic acid did not affect the marked stimulation of palmitate clearance by insulin. Thus most of the insulin-mediated reduction of plasma NEFA appearance and oxidation can be explained by suppression of intracellular lipolysis during enhanced intravascular triglyceride lipolysis in healthy humans. Our results also suggest that insulin may affect plasma NEFA clearance independently of the suppression of intracellular lipolysis.


2020 ◽  
Vol 61 (12) ◽  
pp. 1589-1604
Author(s):  
Ying Zou ◽  
Yi-Na Wang ◽  
Hong Ma ◽  
Zhi-Hui He ◽  
Yan Tang ◽  
...  

Beiging of white adipose tissue (WAT) has beneficial effects on metabolism. Although it is known that beige adipocytes are active in lipid catabolism and thermogenesis, how they are regulated deserves more explorations. In this study, we demonstrate that stearoyl-CoA desaturase 1 (SCD1) in subcutaneous WAT (scWAT) responded to cold stimulation and was able to promote mobilization of triacylglycerol [TAG (triglyceride)]. In vitro studies showed that SCD1 promoted lipolysis in C3H10T1/2 white adipocytes. The lipolytic effect was contributed by one of SCD1’s products, oleic acid (OA). OA upregulated adipose TAG lipase and hormone-sensitive lipase expression. When SCD1 was overexpressed in the scWAT of mice, lipolysis was enhanced, and oxygen consumption and heat generation were increased. These effects were also demonstrated by the SCD1 knockdown experiments in mice. In conclusion, our study suggests that SCD1, known as an enzyme for lipid synthesis, plays a role in upregulating lipid mobilization through its desaturation product, OA.


Sign in / Sign up

Export Citation Format

Share Document