scholarly journals Effect of Resistance Exercise on the Lipolysis Pathway in Obese Pre- and Postmenopausal Women

2021 ◽  
Vol 11 (9) ◽  
pp. 874
Author(s):  
Sunghwun Kang ◽  
Kyu-Min Park ◽  
Kun-Young Sung ◽  
Yuning Yuan ◽  
Seung-Taek Lim

Physical exercise may stimulate lipolytic activity within adipose tissue. Furthermore, resistance exercise may contribute to the more efficient reduction in adipose tissue mass and prevent the accumulation thereof in obese women. The purpose of this study was to examine the effects of regular resistance exercise for 12 weeks on the lipolysis pathway in women with obesity. Twenty-three pre- and postmenopausal women with body fat percentages of 30% or more were divided into the premenopausal group (n = 9) and the postmenopausal group (n = 14). All subjects participated in resistance exercise training for 12 weeks. Anthropometric and physical fitness tests were performed on all participants. Protein analyses were performed on extracted subcutaneous fatty tissue, and changes in the relevant protein levels in the samples were analyzed by Western blotting. All serum samples were submitted for enzyme-linked immunosorbent assay measurements of adipocyte factors. After 12 weeks, the adipose triglyceride lipase, monoacylglycerol lipase, and perilipin1 protein levels were significantly lower in the postmenopausal group than in the premenopausal group. The hormone-sensitive lipase protein levels were significantly higher in the postmenopausal group than in the premenopausal group. In addition, leptin concentrations were significantly decreased after resistance exercise in the postmenopausal group. Adiponectin concentrations were significantly increased after resistance exercise in both groups. These findings indicate that regular resistance exercise is effective in reducing the weight and body fat of obese premenopausal women, and in the secretion of adiponectin. On the other hand, postmenopausal women were found to have redeced weight and body fat, and were found to be positive for the secretion of adipokine factors. In addition, positive changes in lipolysis pathway factors in adipose tissue promote lipid degradation and reduce fat mass. Thus, regular resistance exercise shows positive changes in the lipolysis pathway more effectively in weight and body fat reduction in postmenopausal women than in premenopausal women.

2020 ◽  
Author(s):  
Kyu-Min Park ◽  
Seung-Taek Lim ◽  
Kun-Young Sung ◽  
Sunghwun Kang

Abstract Background and objectives: The purpose of study was to examine the effects of regular resistance exercise for 12 weeks on lipolysis pathway in pre- and post- menopausal women with obesity. Methods: Twenty-three pre- and post- menopausal women with body fat percentages of 30% or more divided into pre- menopausal group (n=9) and post- menopausal group (n=14). All subjects participated in resistance exercise training for 12 weeks. Anthropometric and physical fitness tests were performed on all participants. Protein analyses were performed with subcutaneous fatty tissue extracted, and the samples were analyzed of relevant protein levels changes by using Western blotting. All serum samples were submitted for enzyme-linked immunosorbent assay measurements of adipocyte factors. Results: After 12 weeks between pre- menopausal and post- menopausal groups adipose triglyceride lipase (ATGL), monoacylglycerol lipase (MGL) and perilipin (PLIN) protein levels were significantly lower in the post- menopausal group than in the pre- menopausal group. Hormone-sensitive lipase (HSL) protein levels were significantly higher in the post- menopausal group than in the pre- menopausal group. In addition, leptin concentration was significantly decreased after resistance exercise in the post- menopausal group. Adiponectin concentration was significantly increased after resistance exercise in the both groups. Conclusions: This study indicates that regular resistance exercise to change of leptin and adiponectin might be release of reduction of % fat, and driving overall greater change ATGL, HSL, MGL and PLIN levels in subcutaneous fatty tissue in the obese post- menopausal group more than obese pre- menopausal group.


2017 ◽  
Vol 126 (05) ◽  
pp. 316-320 ◽  
Author(s):  
Okan Dikker ◽  
Seldag Bekpinar ◽  
Gul Ozdemirler ◽  
Mujdat Uysal ◽  
Muberra Vardar ◽  
...  

Abstract Introduction Crosstalk between bone and adipose tissues is implicated in several pathologic conditions related to bone metabolism. Omentin-1, a 34-kD protein, is released from omental adipose tissue. A few studies indicated the effect of omentin-1 on bone health and bone mineral density (BMD) and the interaction of omentin-1 with vitamin D. Therefore, this study aimed to investigate the relationship between omentin-1, vitamin D, and BMD in postmenopausal women with osteoporosis compared with non-osteoporotic counterparts. Materials and methods Forty postmenopausal women with osteoporosis (OP), 40 counterparts without OP, and 30 premenopausal women were enrolled. Dual-energy X-ray Absorptiometry results, body mass index, and some demographic and biochemical data were recorded. Vitamin D (25-hydroxyvitamin D3) levels were measured using liquid chromatography-tandem mass spectrometry. Serum omentin-1 was determined using an enzyme-linked immunosorbent assay. Results Omentin-1 levels tended to increase in both postmenopausal women groups compared with the control group, but this increase was significant only in women with osteoporosis. Vitamin D levels were not different between the groups. When women were categorized according to vitamin D levels, women with normal vitamin D levels had significantly higher omentin-1 levels. A positive correlation was found between omentin-1 and vitamin D levels in all groups (r=0.197, p=0.041, n=110). Conclusion The tendency to an increase in omentin-1 levels in postmenopausal women with osteoporosis may be due to a physiologic compensation against bone loss after menopause. The linear relationship between omentin-1 and vitamin D suggests that adipose tissue is one of the target tissues for the vitamin D effect.


1997 ◽  
Vol 154 (2) ◽  
pp. 285-292 ◽  
Author(s):  
H Shimizu ◽  
Y Shimomura ◽  
Y Nakanishi ◽  
T Futawatari ◽  
K Ohtani ◽  
...  

Abstract The decrease in estrogen in menopausal women increases body fat. The present studies were undertaken to investigate the involvement of estrogen in leptin production in vivo. In the first study, expression of ob gene mRNA in white adipose tissue was measured at 2 and 8 weeks after ovariectomy in rats. In the second, serum leptin concentration was measured in total body fat of 87 weight-matched human subjects (29 men, 29 premenopausal and 29 postmenopausal women). In the third, changes in serum leptin concentration with the menstrual cycle were determined, ob gene expression decreased in subcutaneous and retroperitoneal white adipose tissue of ovariectomized rats 8 weeks after the operation, while ovariectomy increased ob gene expression in mesenteric white adipose tissue. Serum leptin concentration was decreased by ovariectomy. Estradiol supplement reversed the effect of ovariectomy on ob gene expression and circulating leptin levels. In humans, serum leptin concentration was higher in premenopausal women than in men, and in postmenopausal women it was lower than in premenopausal women, but still higher than in men. In 13 premenopausal women, serum leptin levels were significantly higher in the luteal phase than in the follicular phase. The present studies strongly indicate that estrogen regulates leptin production in rats and human subjects in vivo. Regional variation in the regulation of ob gene expression by estrogen was found. Journal of Endocrinology (1997) 154, 285–292


2004 ◽  
Vol 287 (1) ◽  
pp. E120-E127 ◽  
Author(s):  
Matthew J. Watt ◽  
Anna G. Holmes ◽  
Gregory R. Steinberg ◽  
Jose L. Mesa ◽  
Bruce E. Kemp ◽  
...  

Intramuscular triacylglycerols (IMTG) are proposed to be an important metabolic substrate for contracting muscle, although this remains controversial. To test the hypothesis that reduced plasma free fatty acid (FFA) availability would increase IMTG degradation during exercise, seven active men cycled for 180 min at 60% peak pulmonary O2 uptake either without (CON) or with (NA) prior ingestion of nicotinic acid to suppress adipose tissue lipolysis. Skeletal muscle and adipose tissue biopsy samples were obtained before and at 90 and 180 min of exercise. NA ingestion decreased ( P < 0.05) plasma FFA at rest and completely suppressed the exercise-induced increase in plasma FFA (180 min: CON, 1.42 ± 0.07; NA, 0.10 ± 0.01 mM). The decreased plasma FFA during NA was associated with decreased ( P < 0.05) adipose tissue hormone-sensitive lipase (HSL) activity (CON: 13.9 ± 2.5, NA: 9.1 ± 3.0 nmol·min−1·mg protein−1). NA ingestion resulted in decreased whole body fat oxidation and increased carbohydrate oxidation. Despite the decreased whole body fat oxidation, net IMTG degradation was greater in NA compared with CON (net change: CON, 2.3 ± 0.8; NA, 6.3 ± 1.2 mmol/kg dry mass). The increased IMTG degradation did not appear to be due to reduced fatty acid esterification, because glycerol 3-phosphate activity was not different between trials and was unaffected by exercise (rest: 0.21 ± 0.07; 180 min: 0.17 ± 0.04 nmol·min−1·mg protein−1). HSL activity was not increased from resting rates during exercise in either trial despite elevated plasma epinephrine, decreased plasma insulin, and increased ERK1/2 phosphorylation. AMP-activated protein kinase (AMPK)α1 activity was not affected by exercise or NA, whereas AMPKα2 activity was increased ( P < 0.05) from rest during exercise in NA and was greater ( P < 0.05) than in CON at 180 min. These data suggest that plasma FFA availability is an important mediator of net IMTG degradation, and in the absence of plasma FFA, IMTG degradation cannot maintain total fat oxidation. These changes in IMTG degradation appear to disassociate, however, from the activity of the key enzymes responsible for synthesis and degradation of this substrate.


2019 ◽  
Vol 44 (1) ◽  
pp. 83-89
Author(s):  
Yu Qiao ◽  
Guoqiang Fan ◽  
Jun Guo ◽  
Shixing Gao ◽  
Ruqian Zhao ◽  
...  

Zinc-α2-glycoprotein (ZAG) has been demonstrated to play a role in stimulating lipid mobilization under normal conditions. However, further studies are required to determine whether ZAG overexpression can alleviate the reduction in plasma lipid levels under stress conditions. In the present study, we investigated the effects of ZAG on lipometabolism in white adipose tissue (WAT) after dexamethasone (DEX) stimulation using C57BL/6 male mice as the experimental models. Transcript and protein levels of genes associated with the β-adrenoreceptor (β-AR)/cyclic adenosine monophosphate/protein kinase a (PKA) pathway, lipid mobilization, and energy metabolism were determined by quantitative real-time polymerase chain reaction and Western blotting. Plasma levels of nonesterified fatty acid (NEFA) were measured using an automatic biochemical analyzer. Results indicated that plasma NEFA levels were decreased in the DEX group, but NEFA levels were rescued by ZAG overexpression. ZAG overexpression resulted in the upregulation of β3-AR and phosphorylated PKA protein relative to those of the DEX group. Analysis of lipometabolism showed that protein levels of phosphorylated hormone-sensitive lipase was reduced upon DEX treatment but were restored by ZAG overexpression. For energy metabolism, ZAG significantly upregulated the protein expression of carnitine palmitoyltransferase1a and cytochrome c oxidase subunit 1 relative to those of the DEX group. In conclusion, ZAG could alleviate DEX-induced decrease in plasma NEFA levels and this could be associated with the promoting lipid mobilization in WAT.


2014 ◽  
Vol 3 ◽  
Author(s):  
Leanne Hodson ◽  
Karin Harnden ◽  
Rajarshi Banerjee ◽  
Belen Real ◽  
Kyriakoula Marinou ◽  
...  

AbstractThe menopause is accompanied by increased risk of obesity, altered body fat distribution and decreased skeletal muscle mass. The resulting decrease in RMR should be accompanied by a compensatory change in energy balance to avoid weight gain. We aimed to investigate habitual energy intake and expenditure in pre- and postmenopausal women matched for abdominal obesity. We recruited fifty-one healthy Caucasian women, BMI > 18·5 and <35 kg/m2, aged 35–45 years (premenopausal, n 26) and 55–65 years (postmenopausal, n 25). Energy intake was measured using 3 d diet diaries and dietary fat quality assessed using adipose tissue fatty acid biomarkers. RMR was measured using indirect calorimetry, and total energy expenditure (TEE) and activity energy expenditure using a combined accelerometer and heart rate monitor. Postmenopausal women had lower RMR and TEE and spent significantly less time undertaking moderate exercise than premenopausal women. Postmenopausal women had a tendency for a lower energy intake, and a similar macronutrient intake but a significantly lower adipose tissue n-6:n-3 ratio (24·6 (se 1·6) v. 37·7 (se 3·1); P < 0·001). The main lifestyle determinant of bone mineral density (which was significantly lower in postmenopausal women) was TEE for premenopausal women, and dietary n-6:n-3 ratio for postmenopausal women. The present results suggest that weight maintenance is achieved in the post- compared with premenopausal status through a combination of reduced energy intake and reduced TEE in a regimen that compromises micronutrient intake and has a negative impact on lean tissue mass. However, lower n-6:n-3 fatty acid intake in postmenopausal women is associated with greater bone mineral density.


Diabetes Care ◽  
1999 ◽  
Vol 22 (9) ◽  
pp. 1471-1478 ◽  
Author(s):  
A. Pascot ◽  
S. Lemieux ◽  
I. Lemieux ◽  
D. Prud'homme ◽  
A. Tremblay ◽  
...  

2019 ◽  
Author(s):  
Jing Zheng ◽  
Juan Liu ◽  
Beverly S Hong ◽  
Yanbing Li

Abstract Background: The relationship between betatrophin/ANGPTL8 and obesity has been investigated using body mass index (BMI); however, since BMI reflects overall adiposity rather than body fat distribution, it remains unclear whether fat deposition in different areas of the body affects betatrophin expression. Here, we investigated the correlation between circulating betatrophin levels and body fat distribution in patients with different glucose tolerance. Methods: In 128 participants with impaired glucose tolerance (IGT; n = 64) or normal glucose tolerance (NGT; n = 64), we measured circulating betatrophin levels by enzyme-linked immunosorbent assay and body fat distribution (subcutaneous, visceral, and limb fat) using magnetic resonance imaging (MRI) and a body fat meter. Results: After controlling for age, sex, and BMI, betatrophin was correlated positively with visceral adipose tissue-to-subcutaneous adipose tissue ratio ( VAT/SAT ratio; r = 0.339, p = 0.009) and negatively with body fat ratio (BFR; r = -0.275, p = 0.035), left lower limb fat ratio (LLR; r = -0.330, p = 0.011), and right lower limb fat ratio (RLR; r = -0.288, p = 0.027) in the NGT group, with these correlations remaining after controlling for triglycerides. VAT/SAT ratio (standardized β = 0.419, p = 0.001) was independently associated with serum betatrophin levels; however, betatrophin was not associated with body fat distribution variables in the IGT group. Conclusions: Circulating betatrophin levels correlated positively with VAT/SAT ratio and negatively with lower limb fat, but not subcutaneous or upper limb fat, in individuals with normal glucose tolerance. Thus, betatrophin may be a poten­tial biomarker for body fat distribution in individuals without glucose disorders.


2018 ◽  
Vol 19 (12) ◽  
pp. 3995 ◽  
Author(s):  
Agnieszka U. Blachnio-Zabielska ◽  
Hady Razak Hady ◽  
Adam R. Markowski ◽  
Adam Kurianiuk ◽  
Alicja Karwowska ◽  
...  

Ceramide accumulation in muscle and in liver is implicated in the induction of insulin resistance. Much less in known about the role of ceramide in adipose tissue. The aim of the present study was to elucidate the role of ceramide in adipose tissue and to clarify whether lipids participate in the regulation of adipocytokine secretion. The experiments were performed on male Wistar rats divided into three groups: 1. Control, 2. fed high fat diet (HFD), and 3. fed HFD and treated with myriocin. Ceramide (Cer) and diacylglycerol (DAG) content were analyzed by LC/MS/MS. Hormone sensitive lipase (HSL) phosphorylation was analyzed by Western Blot. Plasma adiponectin and tumor necrosis factor alpha (TNF-α) concentration were measured by enzyme-linked immunosorbent assay. An oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) was also performed. In HFD group, total DAG and Cer content was elevated in both subcutaneous and visceral adipose tissue, which was accompanied by increased glucose, insulin, and HOMA-IR value. Myriocin treatment restored HOMA-IR as well as glucose and insulin concentration to control values. Moreover, myriocin decreased not only Cer, but also DAG levels in both fat depots. Furthermore, we observed a strong correlation between adiponectin (negative) and TNF-α (positive) and Cer in both fat tissues, which suggests that Cer is involved in the regulation of adipocytokine secretion.


1994 ◽  
Vol 40 (7) ◽  
pp. 1258-1264 ◽  
Author(s):  
C Rosenquist ◽  
M Bonde ◽  
C Fledelius ◽  
P Qvist

Abstract A heterologous ELISA for measurement of osteocalcin (bone Gla-protein) is described, involving biotinylated bovine osteocalcin and polyclonal antibodies. The log-linear range was 2.3-37.5 micrograms/L. Between-run (total) and within-run CVs (n = 10) were 5.7-6.4 and 5.9-6.1%, respectively; analytical recoveries ranged from 92% to 108%. Comparison of our method (x) with an RIA (y) yielded y = 1.10 x -0.01 microgram/L, Sylx = 1.4 micrograms/L, r = 0.958 (n = 167). Serum osteocalcin in healthy premenopausal women (n = 29) was 8.7 +/- 3.3 micrograms/L (mean +/- SD) and 11.8 +/- 4.5 micrograms/L in early-postmenopausal women (n = 24). The assay was evaluated in a double-blind placebo-controlled study of healthy early-postmenopausal women, treated for 12 months with either (a) estrogen valerate plus medroxyprogesterone acetate (n = 18), (b) 17 beta-estradiol and desogestrel (n = 22), or (c) placebo (n = 17). Serum osteocalcin decreased significantly (P &lt; 0.001) with either therapy, but increased (P &lt; 0.05) with placebo.


Sign in / Sign up

Export Citation Format

Share Document