Effects of chronic exposure to ozone on soluble sugar and ascorbic acid contents of pine seedlings

1972 ◽  
Vol 50 (1) ◽  
pp. 215-219 ◽  
Author(s):  
Robert L. Barnes

Small seedlings of five pine species (Pinus strobus, echinata, elliottii, serotina, and taeda) were exposed to low levels of ozone for periods from 5 to 22 weeks. Exposure to 5 parts per hundred million ozone resulted in significant increases in total soluble carbohydrates, reducing sugars, and ascorbic acid. In seedlings exposed to 15 pphm ozone, soluble sugars were higher than in the controls but ascorbic acid levels were not.

1986 ◽  
Vol 16 (4) ◽  
pp. 696-700 ◽  
Author(s):  
Chris P. Andersen ◽  
Edward I. Sucoff ◽  
Robert K. Dixon

The influence of root zone temperature on root initiation, root elongation, and soluble sugars in roots and shoots was investigated in a glasshouse using 2-0 red pine (Pinusresinosa Ait.) seedlings lifted from a northern Minnesota nursery. Seedlings were potted in a sandy loam soil and grown in chambers where root systems were maintained at 8, 12, 16, or 20 °C for 27 days; seedling shoots were exposed to ambient glasshouse conditions. Total new root length was positively correlated with soil temperature 14, 20, and 27 days after planting, with significantly more new root growth at 20 °C than at other temperatures. The greatest number of new roots occurred at 16 °C; the least, at 8 °C. Total soluble sugar concentrations in stem tissue decreased slightly as root temperature increased. Sugar concentrations in roots were similar at all temperatures. The results suggest that root elongation is suppressed more than root tip formation when red pine seedlings are exposed to the cool soil temperatures typically found during spring and fall outplanting.


HortScience ◽  
2019 ◽  
Vol 54 (12) ◽  
pp. 2169-2177 ◽  
Author(s):  
Karen Mesa ◽  
Sara Serra ◽  
Andrea Masia ◽  
Federico Gagliardi ◽  
Daniele Bucci ◽  
...  

Annual accumulation of starch is affected by carbon reserves stored in the organs during the growing season and is controlled mainly by sink strength gradients within the tree. However, unfavorable environmental conditions (e.g., hail events) or application of management practices (e.g., defoliation to enhance overcolor in bicolor apple) could influence the allocation of storage carbohydrates. This preliminary research was conducted to determine the effects of early defoliation on the dry matter, starch, and soluble carbohydrate dynamics in woody organs, roots, and mixed buds classified by age and two levels of crop-load for one growing season in ‘Abbé Fétel’ pear trees (Oct. 2012 to mid-Jan. 2013 in the northern hemisphere). Regardless of the organs evaluated (woody organs, roots, and mixed buds), an increase of soluble carbohydrate concentration was observed in these organs in the period between after harvest (October) and January (dormancy period). Among all organs, woody short-old spurs showed the highest increase (+93.5%) in soluble sugars. With respect to starch, woody organs showed a clear trend of decreasing in concentration between October and January. In this case, short-old spurs showed the smallest decline in starch concentrations, only 6.5%, whereas in other tree organs starch decreased by 34.5%. After harvest (October), leaves showed substantially higher starch and soluble sugar concentrations in trees with lower crop-loads. These results confirm that in the period between October and January, dynamic interconversions between starch and soluble carbohydrates occur at varying magnitudes among organs in pear trees.


2006 ◽  
Vol 66 (2b) ◽  
pp. 739-745 ◽  
Author(s):  
I. S. Garcia ◽  
A. Souza ◽  
C. J. Barbedo ◽  
S. M. C. Dietrich ◽  
R. C. L. Figueiredo-Ribeiro

Caesalpinia echinata seeds stored in laboratory environmental conditions lose their viability in one month whilst under low temperatures germination is maintained for 18 months of storage. These seeds are tolerant to desiccation, keeping their viability up to 0.08 gH2O.gDW-1. Since soluble carbohydrates are believed to be involved with desiccation tolerance and seed storability, the aim of this work is to analyze the content and composition of soluble carbohydrates in C. echinata seeds during storage in paper bags (PB) and glass flasks (GF) at laboratory room (RT) and cool (CT) temperatures. In freshly harvested seeds, total soluble carbohydrates comprised approximately 10% of the dry weight, decreasing to ca. 8% over 18 months of storage at RT. In seeds stored at CT, sugars varied differently decreasing initially and being restored at the end of the analysis period. The main neutral sugars in seeds from all treatments were sucrose, fructose and glucose. Raffinose and stachyose were present as traces. Free myo-inositol and other cyclitols were also detected. The main tendency observed was the variation in levels of both glucose and fructose in relation to sucrose, the highest levels of monosaccharides which were found in seeds stored at CT. The values of glucose and fructose were practically constant in seeds stored in paper bags for 18 months at CT, decreasing consistently in the other treatments, mainly at RT. Sucrose contents remained relatively stable. Changes in soluble sugars during storage suggest that the loss of germinability of seeds of C. echinata could be associated with low levels of glucose and fructose in relation to sucrose.


2014 ◽  
Vol 26 (2) ◽  
pp. 163-167 ◽  
Author(s):  
Izabela Zawiska ◽  
Piotr Siwek

ABSTRACT The results of two years (2010-2011) of field studies using two types of nonwoven mulches (one biodegradable, polylactic acid PLA 54 g m-2, and traditional polypropylene PP 50 g m-2) on the yield and quality of tomato are presented. Seeds of tomato (‘Mundi’ F1) were sown in a greenhouse, in containers filled with perlite and sand, and then the plants at the cotyledon stage were replanted in multipot trays filled with substrate for vegetable plants. In the last week of May, seedlings were planted on mulches in the field at a spacing of 50 × 100 cm. The mulch was maintained throughout the growing season. A plot that remained unmulched served as the control. Tomatoes were harvested once a week. The fruits were evaluated for L-ascorbic acid, dry matter, soluble sugars and nitrate content. In 2011, the analysis of the plant material showed that the concentration of L-ascorbic acid was about 23% higher in the tomato fruits harvested from plants grown on biodegradable PLA 61 g m-2 mulch in comparison to the control. A similar effect was demonstrated for the soluble sugar concentration in 2011 for both types of nonwovens.


2011 ◽  
Vol 23 (2) ◽  
pp. 107-110 ◽  
Author(s):  
Maria Gawęda ◽  
Zofia Nizioł-Łukaszewska

Quality of kohlrabi stems (Brassica oleracea var. gongylodes L.) kept in cold storage Two green kohlrabi cultivars, ‘White Delikates’ and ‘Korist’ F1, were kept in cold storage at a temperature of 2°C and a relative humidity of 95%. Natural mass losses were measured at monthly intervals and dry matter content, soluble sugars, L-ascorbic acid and isothiocyanates were analysed. During five months of storage, very low losses of kohlrabi mass were detected. The decrease in dry matter during that time was between 15 and 18%. After a brief increase, soluble sugar content decreased during storage, and in March, 50% of the initial sugar content was calculated for ‘Delikates’ kohlrabi flesh and 65% for ‘Korist’. L-ascorbic acid was well preserved in the kohlrabi, since 90% remained after storage was completed. The isothiocyanate content changed little and the vegetable remained a good source of these compounds throughout the storage period.


2009 ◽  
Vol 147 (4) ◽  
pp. 459-467 ◽  
Author(s):  
H. GULEN ◽  
A. CANSEV ◽  
A. ERIS

SUMMARYIn many plant species, several physiological and biochemical changes occur during low-temperature-induced cold acclimation. A previous study with olive cultivars (Cansevet al.2009) demonstrated a correlation between the level of accumulation of certain leaf proteins besides antioxidative enzyme activities and cold hardiness of the cultivars. The present paper analysed soluble sugar (SS) and phospholipid (PL) contents of cold-acclimated (CA) and non-acclimated (NA) leaf tissues in order to explain the mechanism of cultivar-dependent response to cold in olive. In general, cold acclimation significantly increased total soluble sugar (TSS), reducing sugars and sucrose contents of all cultivars to various extents depending on the cold hardiness of cultivars. In addition, TSS, reducing sugars and sucrose contents in cold-tolerant cultivars were significantly increased, whereas TSS, reducing sugars and sucrose contents in cold-sensitive cultivars either did not change or increased slightly in CA stage compared with those in NA stage. Even though reducing sugars were the major soluble sugar in olive leaves, levels of sucrose accumulations in CA stage compared with those in NA stage were greater than those observed in reducing sugars accumulation. Changes in levels of total PL, as well as the three individual PL fractions phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI), were investigated in olive leaf tissues. Significant increases in levels of PC and PE fractions during CA compared with those in NA stage suggested that PC and PE maintained the cold hardiness of olive cultivars more effectively than did PI. Although the precise mechanisms by which olive responds to cold may still be open to discussion, soluble sugars and PL are clearly important in the ability of olive cultivars to stand against cold stress.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 648d-648
Author(s):  
Jack W. Buxton ◽  
Donna Switzer ◽  
Guoqiang Hou

Marigold seedlings, 3 weeks old, were grown in natural light growth chambers at 3 day/night temperature regimes, 8°N/16°D, 13°N/20°D and 18°N/24°D, in a factorial combination with ambient and 1000-1500 ppm CO2. Seedlings were harvested at regular intervals during a 24 hr period and were analyzed for soluble sugars (reducing sugars and sucrose) and starch. Neither temperature nor CO2 concentration affected the accumulation of soluble sugars or starch during the day or night. The soluble sugar concentration ranged from 3% of dry weight at sunrise to 6% at mid-day; the concentration changed little during the night. Light intensity was different during replications of the experiment. Increased light intensity appeared to cause a slight increase in the soluble sugars maintained by the seedling during the day. Accumulated starch increased 6% to 8% from sunrise to late afternoon. Preliminary results indicate that light intensity greatly affected the concentration of starch. On the higher light intensity day, starch accumulated to a maximum of 18% of dry weight; whereas on the lower light intensity day the maximum concentration was 10%. During the night following the lower light intensity day, the starch concentration decreased to approximately 3% by the end of the night; following a brighter day the starch content was 13% at the end of the night.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Ece Turhan ◽  
Sergul Ergin

The bark tissues were collected from 4-year-old sweet cherry trees cvs. 0900 Ziraat and Lambert grafted on Gisela 5 and Mazzard rootstocks in cold-acclimated (CA) and nonacclimated (NA) stages. Bark tissues subjected to 4°C and −5°C injured to a limited extent in both stages. However, more than 50% injury occurred by temperatures equal to or colder than −15°C only in NA period. Total soluble sugar (TSS), reducing sugars, and sucrose contents were higher in CA than those in NA stages in all samples. The activities of acid invertase (EC 3.2.1.26) and sucrose synthase (SS) (EC 2.4.2.13) enzymes were higher in NA stage than those in CA stage. Considering the rootstocks, reducing sugars were higher in both cultivars grafted on Gisela 5 whereas sucrose contents were higher in both cultivars grafted on Mazzard. However, the enzyme activities of both cultivars were higher on Mazzard rootstock than on Gisela 5. In conclusion, cold hardiness of sweet cherry graft combinations was suggested by increasing their TSS, reducing sugars, and sucrose contents significantly in the CA stage. Moreover, acid invertase and SS are down regulated during cold acclimation. Indeed the results suggested that Mazzard is more cold-hardy rootstock than Gisela 5.


Author(s):  
Gerlândia da S. Pereira ◽  
Francisca L. de C. Machado ◽  
José M. C. da Costa

ABSTRACT In this study, oranges of the cultivar ‘Valencia Delta’ were degreened, coated with carnaúba-based wax and stored under refrigeration. The influence of the application of exogenous ethylene and coating was observed on physical and physico-chemical properties of the fruits. After the application of the treatments, the fruits were refrigerated (7 ± 2 oC) for a period of 35 days. The analyzed variables included weight loss, peel color, titratable acidity, ascorbic acid, total soluble sugars, reducing sugars, total polyphenols and total chlorophyll of the peel. The coated fruits showed significant reduction in weight loss when compared with the uncoated fruits, which lost about 3.0% of moisture at the end of the experiment. Significant reduction in the values of hue angle, accompanied by sharp deterioration in chlorophyll contents, suggested that the applied ethylene concentration was efficient in reducing green peel color. The contents of total polyphenols, total soluble sugars and reducing sugars increased while ascorbic acid decreased. The application of the coating, after degreening, was fundamental in maintaining the quality of the ‘Valencia Delta’ orange during storage.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 244
Author(s):  
Zixuan Yu ◽  
Xiaofeng Zhang ◽  
Rong Zhang ◽  
Yan Yu ◽  
Fengbo Sun

Bamboo is much more easily attacked by fungus compared with wood, resulting in shorter service life and higher loss in storage and transportation. It has been long accepted that the high content of starch and sugars in bamboo is mainly responsible for its low mould resistance. In this paper, acetic acid, propionic acid, oxalic acid, citric acid, and hydrochloric acid were adopted to hydrothermally hydrolyze the starch in bamboo, with the aims to investigate their respective effect on the mould and blue-stain resistance of bamboo, and the optimized citric acid in different concentrations were studied. The starch content, glucose yields, weight loss, and colour changes of solid bamboo caused by the different acidic hydrolysis were also compared. The results indicated that weak acidic hydrolysis treatment was capable of improving mould-resistant of bamboo. The mould resistance increased with the increased concentration of citric acid. Bamboo treated with citric acid in the concentration of 10% could reduce the infected area ranging to 10–17%, the growth rating of which could reach 1 resistance. The content of soluble sugar and starch remained in bamboo decreased significantly from 43 mg/g to 31 mg/g and 46 mg/g to 23 mg/g, respectively, when the citric acid concentration varied from 4% to 10%. Citric acid treatments of 10% also caused a greatest surface colour change and weight loss. The results in this study demonstrated citric acid treatment can effectively reduce the starch grain and soluble sugars content and improve mould resistance of bamboo, which can be attributed to the reduction of starch grain and soluble carbohydrates (such as glucose, fructose, and sucrose, etc.) in bamboo.


Sign in / Sign up

Export Citation Format

Share Document