scholarly journals Improving the Mould and Blue-Stain-Resistance of Bamboo through Acidic Hydrolysis

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 244
Author(s):  
Zixuan Yu ◽  
Xiaofeng Zhang ◽  
Rong Zhang ◽  
Yan Yu ◽  
Fengbo Sun

Bamboo is much more easily attacked by fungus compared with wood, resulting in shorter service life and higher loss in storage and transportation. It has been long accepted that the high content of starch and sugars in bamboo is mainly responsible for its low mould resistance. In this paper, acetic acid, propionic acid, oxalic acid, citric acid, and hydrochloric acid were adopted to hydrothermally hydrolyze the starch in bamboo, with the aims to investigate their respective effect on the mould and blue-stain resistance of bamboo, and the optimized citric acid in different concentrations were studied. The starch content, glucose yields, weight loss, and colour changes of solid bamboo caused by the different acidic hydrolysis were also compared. The results indicated that weak acidic hydrolysis treatment was capable of improving mould-resistant of bamboo. The mould resistance increased with the increased concentration of citric acid. Bamboo treated with citric acid in the concentration of 10% could reduce the infected area ranging to 10–17%, the growth rating of which could reach 1 resistance. The content of soluble sugar and starch remained in bamboo decreased significantly from 43 mg/g to 31 mg/g and 46 mg/g to 23 mg/g, respectively, when the citric acid concentration varied from 4% to 10%. Citric acid treatments of 10% also caused a greatest surface colour change and weight loss. The results in this study demonstrated citric acid treatment can effectively reduce the starch grain and soluble sugars content and improve mould resistance of bamboo, which can be attributed to the reduction of starch grain and soluble carbohydrates (such as glucose, fructose, and sucrose, etc.) in bamboo.

HortScience ◽  
2019 ◽  
Vol 54 (12) ◽  
pp. 2169-2177 ◽  
Author(s):  
Karen Mesa ◽  
Sara Serra ◽  
Andrea Masia ◽  
Federico Gagliardi ◽  
Daniele Bucci ◽  
...  

Annual accumulation of starch is affected by carbon reserves stored in the organs during the growing season and is controlled mainly by sink strength gradients within the tree. However, unfavorable environmental conditions (e.g., hail events) or application of management practices (e.g., defoliation to enhance overcolor in bicolor apple) could influence the allocation of storage carbohydrates. This preliminary research was conducted to determine the effects of early defoliation on the dry matter, starch, and soluble carbohydrate dynamics in woody organs, roots, and mixed buds classified by age and two levels of crop-load for one growing season in ‘Abbé Fétel’ pear trees (Oct. 2012 to mid-Jan. 2013 in the northern hemisphere). Regardless of the organs evaluated (woody organs, roots, and mixed buds), an increase of soluble carbohydrate concentration was observed in these organs in the period between after harvest (October) and January (dormancy period). Among all organs, woody short-old spurs showed the highest increase (+93.5%) in soluble sugars. With respect to starch, woody organs showed a clear trend of decreasing in concentration between October and January. In this case, short-old spurs showed the smallest decline in starch concentrations, only 6.5%, whereas in other tree organs starch decreased by 34.5%. After harvest (October), leaves showed substantially higher starch and soluble sugar concentrations in trees with lower crop-loads. These results confirm that in the period between October and January, dynamic interconversions between starch and soluble carbohydrates occur at varying magnitudes among organs in pear trees.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1079f-1079 ◽  
Author(s):  
David Graper ◽  
Will Healy

Non flowering Alstroemeria `Regina' plants were divided into aerial components: stems and apical and basal leaves or underground components: rhizome, storage roots, stele and fibrous roots. Samples were collected from distal and proximal ends of the rhizome to allow comparisons between structures of different ages. Ethanol soluble sugars were extracted and measured using HPLC. Starch was degraded to glucose using amyloglucosidase and measured.There were no age differences in the starch, total soluble sugar (TSUGAR) or total soluble carbohydrates (TCHO) in the rhizome or aerial portions of the plant. There was a preferential partitioning of starch, sucrose, TSUGAR and TCHO to underground plant parts. The storage roots were the primary sink for the stored carbohydrates. Stems contained large concentration of glucose while fructose was found in storage roots and old stems. Sucrose was found primarily in old steles and storage roots. Starch was partitioned almost exclusively into the storage roots with no difference due to age of the storage root. Up to 42% of the TCHO in the old storage roots was composed of a carbohydrate which co-chromatogramed with melezitose using HPLC.


2014 ◽  
Vol 50 (No. 2) ◽  
pp. 157-162 ◽  
Author(s):  
M. Gawłowska ◽  
L. Lahuta ◽  
W. Święcicki ◽  
P. Krajewski

Anti-nutritional compounds are among the obstacles to the use of pea seeds as a protein source in both feed and food. These compounds are poorly digested by both monogastric animals and humans. There are three main oligosaccharides in pea: raffinose, stachyose and verbascose (raffinose family oligosaccharides – RFOs). The concentration of oligosaccharides in dry seeds, the oligosaccharide percent to the total content of soluble sugars and quantitative trait loci (QTLs) were analysed in the mapping population Wt10245 × Wt11238. The composition and concentration of soluble carbohydrates in seeds harvested from two field experiments (2002 and 2004) were analysed by the high resolution gas chromatography method. The Wt10245 × Wt11238 population was chosen because of the greater difference in the concentration of RFOs in seeds between parental lines (56.48 mg/g seed in Wt10245 and 99.1 mg/g seed in Wt11238). The average levels of oligosaccharides (mg/g seed) from both field experiments in the mapping population were: myo-inositol 1.5, sucrose 33.3, galactinol 0.8, raffinose 9.6, stachyose 30.1, verbascose 37.1. The total oligosaccharide concentration was 76.8 mg/g seed. This comprised anaverage of 68% soluble sugars, with the range from 59% to 75%. There was no interaction between lines and years of experiments (significance of lines × year interaction, F statistic > 0.01). One main quantitative trait locus was found for both experiments in LG VA (the tl-r interval) and three additional: in LG I (five traits 2002 and 2004 near afp1k), LG II (two traits 2002 near afp15h) and LG IIIB (five traits 2004 and 2002 near afp4i and M16). The main QTL was responsible for the level of RFOs and the total soluble sugar concentration in seeds. The results are in agreement with the knowledge of RFO biosynthesis. This makes selection for changes in the proportion of the particular oligosaccharides difficult, like in Phaseolus. However, it is possible to decrease the RFO content in pea seeds. The linkage between QTL and the gene r is interesting. The rugosus (r) locus changes the morphology and distribution of starch grains, decreases the total starch accumulation, produces a higher ratio of amylose to amylopectin and higher sugar and water content during development along with changes in cell size and lipid content.


1972 ◽  
Vol 50 (1) ◽  
pp. 215-219 ◽  
Author(s):  
Robert L. Barnes

Small seedlings of five pine species (Pinus strobus, echinata, elliottii, serotina, and taeda) were exposed to low levels of ozone for periods from 5 to 22 weeks. Exposure to 5 parts per hundred million ozone resulted in significant increases in total soluble carbohydrates, reducing sugars, and ascorbic acid. In seedlings exposed to 15 pphm ozone, soluble sugars were higher than in the controls but ascorbic acid levels were not.


2011 ◽  
Vol 74 (4) ◽  
pp. 281-286 ◽  
Author(s):  
Agnieszka I. Piotrowicz-Cieślak

This article present a comparison of soluble sugar levels in seeds of <em>Lupinus atlanticus</em>, <em>Lupinus cosentinii</em>, <em>Lupinus palaestinus</em> and <em>Lupinus pilosus</em>, <em>Lupinus hispanicus</em> subsp. <em>hispanicus</em> and <em>Lupinus luteus</em> of Juno variety. Considering that sugars are accumulated in embryos, only the embryonic tissues were used for biochemical analyses. Additionally, the share of testa and embryo in seed tissues was evaluated. The seed-coat thickness was measured using scanning electron microscopy. The seed coat had the largest share in seeds of <em>Lupinus pilosus</em> and <em>Lupinus palaestinus</em>, and the least share in seeds of <em>Lupinus hispanicus</em> subsp. <em>hispanicus</em> and <em>Lupinus luteus</em> of Juno variety. In the seed of <em>Lupinus pilosus</em> the thickness of the seed coat was 1100 µm, while in <em>Lupinus luteus</em> it was 300 µm. The analysed <em>Lupinus</em> seeds accumulated from 73 mg/g d.m. (dry matter of seed embryo) to 155 mg of soluble sugars/g d.m. The highest quantity of oligosaccharides of the raffinose series was found in seeds of <em>Lupinus luteus</em>, while the lowest amount in seed of <em>Lupinus palaestinus</em>. Galactosyl cyclitols appeared in largest amount in seeds of <em>Lupinus palaestinus</em> and <em>Lupinus pilosus</em>, appropriately 41.93 and 33.75 mg/g dm. The lowest amount of galactosyl cyclitols appeared in <em>Lupinus atlanticus</em>, <em>Lupinus cosentinii</em> and <em>Lupinus hispanicus</em>.


2020 ◽  
Author(s):  
Xue Wang ◽  
Fei-Hai Yu ◽  
Yong Jiang ◽  
Mai-He Li

Abstract Aims Carbon and nutrient physiology of trees at their upper limits have been extensively studied, but those of shrubs at their upper limits have received much less attention. The aim of this study is to examine the general patterns of non-structural carbohydrates (NSCs), nitrogen (N) and phosphorous (P) in shrubs at the upper limits, and to assess whether such patterns are similar to those in trees at the upper limits. Methods Across Eurasia, we measured the concentrations of soluble sugars, starch, total NSCs, N and P in leaves, branches and fine roots (&lt; 0.5 cm in diameter) of five shrub species growing at both the upper limits and lower elevations in both summer (peak growing season) and winter (dormancy season). Important Findings Neither elevation nor season had significant effects on tissue N and P concentrations, except for lower P concentrations in fine roots in winter than in summer. Total NSCs and soluble sugars in branches were significantly higher in winter than in summer. There were significant interactive effects between elevation and season for total NSCs, starch, soluble sugars and the ratio of soluble sugar to starch in fine roots, showing lower soluble sugars and starch in fine roots at the upper limits than at the lower elevations in winter but not in summer. These results suggest that the carbon physiology of roots in winter may play an important role in determining the upward distribution of shrubs, like that in the alpine tree-line trees.


1986 ◽  
Vol 16 (4) ◽  
pp. 696-700 ◽  
Author(s):  
Chris P. Andersen ◽  
Edward I. Sucoff ◽  
Robert K. Dixon

The influence of root zone temperature on root initiation, root elongation, and soluble sugars in roots and shoots was investigated in a glasshouse using 2-0 red pine (Pinusresinosa Ait.) seedlings lifted from a northern Minnesota nursery. Seedlings were potted in a sandy loam soil and grown in chambers where root systems were maintained at 8, 12, 16, or 20 °C for 27 days; seedling shoots were exposed to ambient glasshouse conditions. Total new root length was positively correlated with soil temperature 14, 20, and 27 days after planting, with significantly more new root growth at 20 °C than at other temperatures. The greatest number of new roots occurred at 16 °C; the least, at 8 °C. Total soluble sugar concentrations in stem tissue decreased slightly as root temperature increased. Sugar concentrations in roots were similar at all temperatures. The results suggest that root elongation is suppressed more than root tip formation when red pine seedlings are exposed to the cool soil temperatures typically found during spring and fall outplanting.


1983 ◽  
Vol 63 (2) ◽  
pp. 415-420 ◽  
Author(s):  
D. G. GREEN

Alfa, a relatively nonhardy alfalfa cultivar continued to accumulate, on a dry weight basis, fructose, α- and β-D-glucose, sucrose and maltose during the latter stages of cold hardening. Rambler, a hardier alfalfa cultivar conversely showed a decrease for these soluble sugars with hardening. Frontier rye, a very hardy winter habit cereal showed decreases in these soluble sugars plus melibiose during the same hardening period. These results support the hypothesis that hardy cereals and alfalfa undergo a decrease in soluble sugars with hardening, while less hardy cereals and alfalfa continue to increase in content of soluble sugars. Manitou wheat appeared not to fit this hypothesis and showed the decreased soluble sugars usually associated with hardy cultivars. Although Manitou is a spring type wheat, one of its parents, Thatcher, does contain gene(s) for the winter habit.Key words: Sugar, cold hardening, wheat, rye, alfalfa


2021 ◽  
Vol 18 (1) ◽  
pp. 51-57
Author(s):  
F.A. Faruwa ◽  
K. Duru

The study investigated the use of thermal modification to improve the hygroscopic properties of False Iroko [Antiaris toxicaria (Lesch)]. Samples of Antiaris toxicara Lesch wood were subjected to thermal modification in a furnace at temperatures of 160, 180 and 200°C for 30 and 60 minutes. Results showed that wood properties were improved with exposure to different temperatures. Subsequent to the thermal process, a colour change from pale yellow to darkish brown was observed progressively with increase in temperature, accompanied by a weight loss in the range of 12.08% to 23.67%. The outcome of these treatments resulted in a decrease in volumetric swelling and increase in dimensional stability of modified wood; this can be attributed to observed decrease in moisture intake. The thermal modification of Antiaris toxicara Lesch wood affected the dimensional stability properties. Thus, due to significant changes via modification carried out on the selected species which is classified as lesser utilized wood species, lesser utilized wood,Antiaristoxicara Lesch wood is recommended for use due to its efficient dimensional stability after modification . keywords:, Thermally modified wood ;False Iroko


2021 ◽  
Author(s):  
Lynn Doran ◽  
Amanda P. De Souza

Quantification of total soluble sugars (as glucose) in plant tissue extracts via the sulfuric phenol method adapted for 96 well plates.


Sign in / Sign up

Export Citation Format

Share Document