Fungi associated with halophytes of an inland salt marsh, Manitoba, Canada

1987 ◽  
Vol 65 (6) ◽  
pp. 1137-1151 ◽  
Author(s):  
Tawfik M. Muhsin ◽  
Tom Booth

Six halophytic plants including Atriplex patula, Glaux maritima, Hordeum jubatum, Puccinellia nuttalliana, Salicornia rubra, and Suaeda depressa were collected at various growth stages throughout the growing season of the summers 1982 and 1983 from an inland salt marsh at Delta, Man. Washed root and shoot pieces of each plant species were plated on culture medium, incubated, and surveyed for cauloplane and rhizoplane fungi. A total of 31 taxa were isolated including 3 asco-mycetes, 2 coelomycetes, 1 zygomycete, and 25 hyphomycetes. Morphological features, plant type, cultures, and taxonomic deposition are presented for each fungal taxon.


2014 ◽  
Vol 64 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Jolanta Muszer

Abstract A new species of micromorphic articulate brachiopod (Rhynchonellida) Lambdarina jugowiensis sp. nov., from the upper Visean (Sokolec Beds) of central Sudetes, SW Poland, is described. The studied specimens are calcified, what makes them unique in respect of their state of preservation. The material is represented by a full range of growth stages; from brephic to gerontic. Based on its morphological features and the palaeogeographical distribution of all its known species, two main evolutionary lines are proposed for the genus; the Australian and the European ones. Lambdarina was widely distributed in the equatorial-tropical waters of marginal seas of the Palaeotethys Ocean, mostly during Mississippian time.



Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 356
Author(s):  
Shubham Mahajan ◽  
Akshay Raina ◽  
Xiao-Zhi Gao ◽  
Amit Kant Pandit

Plant species recognition from visual data has always been a challenging task for Artificial Intelligence (AI) researchers, due to a number of complications in the task, such as the enormous data to be processed due to vast number of floral species. There are many sources from a plant that can be used as feature aspects for an AI-based model, but features related to parts like leaves are considered as more significant for the task, primarily due to easy accessibility, than other parts like flowers, stems, etc. With this notion, we propose a plant species recognition model based on morphological features extracted from corresponding leaves’ images using the support vector machine (SVM) with adaptive boosting technique. This proposed framework includes the pre-processing, extraction of features and classification into one of the species. Various morphological features like centroid, major axis length, minor axis length, solidity, perimeter, and orientation are extracted from the digital images of various categories of leaves. In addition to this, transfer learning, as suggested by some previous studies, has also been used in the feature extraction process. Various classifiers like the kNN, decision trees, and multilayer perceptron (with and without AdaBoost) are employed on the opensource dataset, FLAVIA, to certify our study in its robustness, in contrast to other classifier frameworks. With this, our study also signifies the additional advantage of 10-fold cross validation over other dataset partitioning strategies, thereby achieving a precision rate of 95.85%.



Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1616
Author(s):  
Božena Šerá ◽  
Vladimír Scholtz ◽  
Jana Jirešová ◽  
Josef Khun ◽  
Jaroslav Julák ◽  
...  

The legumes (Fabaceae family) are the second most important agricultural crop, both in terms of harvested area and total production. They are an important source of vegetable proteins and oils for human consumption. Non-thermal plasma (NTP) treatment is a new and effective method in surface microbial inactivation and seed stimulation useable in the agricultural and food industries. This review summarizes current information about characteristics of legume seeds and adult plants after NTP treatment in relation to the seed germination and seedling initial growth, surface microbial decontamination, seed wettability and metabolic activity in different plant growth stages. The information about 19 plant species in relation to the NTP treatment is summarized. Some important plant species as soybean (Glycine max), bean (Phaseolus vulgaris), mung bean (Vigna radiata), black gram (V. mungo), pea (Pisum sativum), lentil (Lens culinaris), peanut (Arachis hypogaea), alfalfa (Medicago sativa), and chickpea (Cicer aruetinum) are discussed. Likevise, some less common plant species i.g. blue lupine (Lupinus angustifolius), Egyptian clover (Trifolium alexandrinum), fenugreek (Trigonella foenum-graecum), and mimosa (Mimosa pudica, M. caesalpiniafolia) are mentioned too. Possible promising trends in the use of plasma as a seed pre-packaging technique, a reduction in phytotoxic diseases transmitted by seeds and the effect on reducing dormancy of hard seeds are also pointed out.



2021 ◽  
Vol 67 (3-4) ◽  
pp. 149-155
Author(s):  
Har'el Agra ◽  
Hadar Shalom ◽  
Omar Bawab ◽  
Gyongyver J. Kadas ◽  
Leon Blaustein

Abstract Green roofs are expected to contribute to higher biodiversity in urban surroundings. Typically, green roofs have been designed with low plant diversity. However, plant diversity can be enhanced by controlling resource availability and creating distinct niches. Here we hypothesize that by using different drainage heights during the short plant-growing season in a semi-arid green roof system we can create distinct niches and plant communities. Our experiment took place at the University of Haifa, north Israel. We tested three different heights of drainage outlet: 10 cm under the surface of the substrate (Low), 1 cm under the surface of the substrate (Medium) and 3 cm above the surface of the substrate (High) on plant species-composition in green-roof gardens. Grasses cover was higher in High and Medium drainages while forbs cover was higher in Low drainage. Species richness was the highest in Low drainage while diversity indices showed the opposite trend. We conclude that by changing the height of the drainage we can create different niches and change species composition in a short time period of one growing season. This way we can create more diverse green roof communities and enhance biodiversity in urban areas, particularly in semi-arid regions.



2019 ◽  
Vol 114 (2) ◽  
pp. 111-124
Author(s):  
Nashmin Ebrahimi ◽  
Frederick L. Stoddard ◽  
Helinä Hartikainen ◽  
Mervi M. Seppänen
Keyword(s):  


1988 ◽  
Vol 34 (11) ◽  
pp. 1203-1208 ◽  
Author(s):  
M. F. Van Outryve ◽  
F. Gosselé ◽  
K. Kersters ◽  
J. Swings

The bacterial composition of the chicory rhizosphere (Cichorium intybus L. var. foliosum Hegi) was examined at four different growth stages in the field and also after 1 month storage of the roots. Based on protein fingerprints (SDS – polyacrylamide gel electrophoresis of total cell proteins) 233 isolates were grouped into 117 different groups. Forty percent of the isolates belonged to one of three groups: CH001, CH002, or CH213. Fingerprint type CH001 and CH002 were comprised of fluorescent pseudomonads. Fingerprint type CH213 was identified as Alcaligenes paradoxus. Fingerprint type CH213 strains, normally isolated early in the growing season, were inhibited in vitro by fingerprint type CH001 strains which appeared later in the growing season. Gram-negative isolates were predominant among the remaining fingerprint types: Pseudomonas paucimobilis, Xanthomonas maltophilia, Agrobacterium radiobacter, and Flavobacterium spp. A few Gram-positive isolates were found at the beginning of the growing season, i.e., Bacillus spp. and Streptomyces spp. The production of antifungal compounds was restricted to the 11 isolates among which were fluorescent Pseudomonas and Bacillus spp. Twenty-four fluorescent pseudomonad isolates from the rhizosphere were pathogenic on chicory leaves.



2013 ◽  
Vol 58 (3) ◽  
pp. 953-968 ◽  
Author(s):  
Arash Ebrahimabadi ◽  
Iraj Alavi

Abstract Plant species selection is a multi-criteria evaluation decision and has a strategic importance for many companies. The conventional methods for plant species selection are inadequate for dealing with the imprecise or vague nature of linguistic assessment. To overcome this difficulty, fuzzy multi-criteria decision-making methods are proposed. The aim of this study is to use the fuzzy technique for order preference by similarity to ideal solution (F.TOPSIS) methods for the selection of plant species in mine reclamation plan. Plant type selection and planting to protect the environment and the reclamation of the mine are some of the most important solutions. Therefore, the objective of the current research study is to choose the proper plant types for reclamation of Sarcheshmeh Copper Mine using Fuzzy-topsis method. In this regard, primarily, surrounding area of Sarcheshmeh copper mine, one of the world’s 10 biggest copper mine which is located near Kerman city of Iran, are surveyed, to choose the best plant type for reclamation of disturbance area. With this respect, based on reclamation plan, primary criteria were consisted of kinds of post mining land use, climate, and nature of soil. Comparison matrixes were then obtained based on experts’ opinion and plant types were subsequently prioritized using the Fuzzy Topsis method. Secondary factors considered through the analysis were as follows: perspective of the region, resistance against disease and insects, strength and method of growth, availability to plant type, economic efficiency, protection of soil, storing water, and prevention of pollution. Finally, suitable plant types in the mining perimeter were prioritized as: Amygdalus scoparia, Tamarix, Pistachio Wild, Ephedra, Astragalus, Salsola, respectively.



2005 ◽  
Vol 85 (2) ◽  
pp. 351-360 ◽  
Author(s):  
D. B. McKenzie ◽  
Y. A. Papadopoulos ◽  
K. B. McRae ◽  
E. Butt

Kentucky bluegrass, meadow fescue, orchardgrass, tall fescue, timothy, and reed canarygrass were seeded in all possible two-grass combinations with white clover in conventional and underseeded barley treatments using a split-plot design at the Western Agriculture Centre near Pynn’s Brook, NL. The objectives were: (1) to assess dry matter yield (DMY) of two binary grass species when sown with white clover in mixtures under a system with cuttings at similar crop growth stages as rotational grazing and to assess the effect of underseeding to barley on this system; (2) to identify mixtures that enhance herbage distribution throughout the grazing season; and (3) to assess the sward dynamics over successive cropping seasons. The composition of the binary grass mixtures with white clover affected seasonal DMY, seasonal herbage distribution, and sward dynamics over the production years. Orchardgrass in mixtures decreased DMY, shifted the herbage distribution toward early season, and competed with other species. Timothy composition of the stand showed the largest decline over the 3 production years, whereas white clover declined in mixtures with bluegrass, orchardgrass, or tall fescue. Meadow fescue and reed canarygrass with white clover was the most productive mixture with excellent persistence and good yield distribution over the growing season. Orchardgrass was the least compatible species in the mixtures; it dominated first growth and contributed the least to biomass production in later years. Both bluegrass and reed canarygrass performed well in mixtures over the 3 production years; bluegrass appeared to enhance the performance of the other species during summer regrowth whereas reed canarygrass was superior in the later part of the growing season. Underseeding with barley did not affect white clover yield in any production year but detrimentally affected the yield of orchardgrass and meadow fescue in mixtures, and their seasonal distribution. Key words: Bluegrass, orchardgrass, meadow fescue, tall fescue, timothy, reed canarygrass, repeated measurements, principal component analysis, herbage DM distribution, species competition



Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 571
Author(s):  
Mohamed Galal Eltarabily ◽  
John M. Burke ◽  
Khaled M. Bali

Yield and production functions of sunflower (Helianthus annuus) were evaluated under full and deficit irrigation practices with the presence of shallow saline groundwater in a semi-arid region in the Imperial Valley of southern California, USA. A growing degree day (GDD) model was utilized to estimate the various growth stages and schedule irrigation events throughout the growing season. The crop was germinated and established using overhead irrigation prior to the use of a subsurface drip irrigation (SDI) system for the remainder of the growing season. Four irrigation treatments were implemented: full irrigation (100% full sunflower crop evapotranspiration, ETC), two reduced irrigation scenarios (95% ETC and 80% ETC), and a deficit irrigation scenario (65% ETC). The salinity of the irrigation water (EC) (Colorado River water) was nearly constant at 1.13 dS·m−1 during the growing season. The depth to groundwater and groundwater salinity (ECGW) were continuously monitored in five 3 m deep observation wells. Depth to groundwater fluctuated slightly under the full and reduced irrigation treatments, but drastically increased under deficit irrigation, particularly toward the end of the growing season. Estimates of ECGW ranged from 7.34 to 12.62 dS·m−1. The distribution of soil electrical conductivity (ECS) and soil matric potential were monitored within the active root zone (120 cm) at selected locations in each of the four treatments. By the end of the experiment, soil salinity (ECS) across soil depths ranged from 1.80 to 6.18 dS·m−1. The estimated groundwater contribution to crop evapotranspiration was 9.03 cm or approximately 16.3% of the ETC of the fully irrigated crop. The relative yields were 91.8%, 82.4%, and 83.5% for the reduced (95% and 80% ETC) and deficit (65% ETC) treatments, respectively, while the production function using applied irrigation water (IW) was: yield = 0.0188 × (IW)2 − 15.504 × IW + 4856.8. Yield reduction in response to water stress was attributed to a significant reduction in both seed weight and the number of seed produced resulting in overall average yields of 2048.9, 1879.9, 1688.1, and 1710.3 kg·ha−1 for the full, both reduced, and deficit treatments, respectively. The yield response factor, ky, was 0.63 with R2 = 0.745 and the irrigation water use efficiencies (IWUE) were 3.70, 3.57, 3.81, and 4.75 kg·ha−1·mm−1 for the full, reduced, and deficit treatments, respectively. Our results indicate that sunflowers can sustain the implemented 35% deficit irrigation with root water uptake from shallow groundwater in arid regions with a less than 20% reduction in yield.



2019 ◽  
Vol 33 (2) ◽  
pp. 272-279
Author(s):  
Amber N. Eytcheson ◽  
Daniel B. Reynolds

AbstractField and greenhouse studies were conducted to evaluate the antagonism potential of glufosinate applied sequentially or mixed with graminicides on barnyardgrass control. Applications of glufosinate alone provided variable control throughout the growing season in both field and greenhouse experiments. In the field, barnyardgrass control was not adversely affected by glufosinate- and clethodim-mix applications or sequential applications of glufosinate before or after clethodim. Soybean yield was not affected by application timing or clethodim rate, with yield ranging from 1,748 to 2,733 kg ha−1. In the greenhouse, glufosinate applied 1 and 3 d before graminicides generally reduced barnyardgrass control compared with the graminicides applied alone. The response with quizalofop-P was not as dramatic as with the other graminicides. Although significant visual barnyardgrass control differences were detected due to application timing of glufosinate, barnyardgrass biomass with fluazifop-P and quizalofop-P did not differ between the application timings of glufosinate. However, glufosinate applied 1 and 3 d before clethodim had significantly greater biomass compared with glufosinate applied 1 and 3 d after clethodim. The differences in environmental conditions and growth stages at the time of application may have contributed to barnyardgrass control response differences between the field and greenhouse experiments. Although barnyardgrass control in the field was not affected by glufosinate application timing, data from the greenhouse indicate potential exists for reduced control if glufosinate is applied 1 or 3 d before graminicides.



Sign in / Sign up

Export Citation Format

Share Document