lncRNA CTBP1-AS2 promotes proliferation and migration of glioma by modulating miR-370-3p–Wnt7a-mediated epithelial–mesenchymal transition

2020 ◽  
Vol 98 (6) ◽  
pp. 661-668
Author(s):  
Yongfeng Li ◽  
Jin Zong ◽  
Cong Zhao

Glioma is one of the most common and aggressive malignant primary brain tumors, with a poor 5-year survival rate. The long noncoding RNA (lncRNA) CTBP1-AS2 has been shown to be correlated with the prognosis of cancer, but the role of CTBP1-AS2 in glioma and its concrete mechanism is fully unknown. The clinical data and tissues of glioma patients were analyzed. Cell viability and migration assays were performed. Western blotting and qRT-PCR were adopted for investigation of target protein expressions. Double luciferase assay was used to investigate the interaction between different elements. The lncRNA CTBP1-AS2 had increased expression profiles in tumor tissues, which is associated with poor prognosis. In detail, CTBP1-AS2 knockdown decreased proliferation and migration phenotypes in both U87-MG and LN229 cells. Moreover, CTBP1-AS2 knockdown suppressed the key epithelial–mesenchymal transition (EMT) markers by downregulating Wnt7a-mediated signaling. Furthermore, miR-370-3p functioned as a link that could be absorbed by CTBP1-AS2, thus regulating Wnt7a expression. Lastly, the CTBP1-AS2–miR-370-3p–Wnt7a axis modulated EMT in glioma cells in vitro and in vivo. This study provides new insights that a novel lncRNA, CTBP1-AS2, regulates EMT of glioma by modulating the miR-370-3p–Wnt7a axis.

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Rong-Hang Hu ◽  
Zi-Teng Zhang ◽  
Hai-Xiang Wei ◽  
Lu Ning ◽  
Jiang-Shan Ai ◽  
...  

Abstract Background Growing evidence suggests that suppressor of tumorigenicity 7 antisense RNA 1 (ST7-AS1) is an oncogenic long noncoding RNA (lncRNA). However, little is known on its clinical significance, biological functions, or molecular mechanisms in lung adenocarcinoma (LUAD). Methods The expression of ST7-AS1 and miR-181b-5p were examined by qRT-PCR. The correlations between ST7-AS1 level and different clinicopathological features were analysed. In vitro, LUAD cells were examined for cell viability, migration and invasion by MTT, wound healing and Transwell assay, respectively. Epithelial-mesenchymal transition (EMT) biomarkers were detected by Western blot. The regulations between ST7-AS1, miR-181b-5p, and KPNA4 were examined by luciferase assay, RNA immunoprecipitation, RNA pulldown. Both gain- and loss-of-function strategies were used to assess the importance of different signalling molecules in malignant phenotypes of LUAD cells. The in vivo effect was analysed using the xenograft and the experimental metastasis mouse models. Results ST7-AS1 was upregulated in LUAD tissues or cell lines, correlated with tumours of positive lymph node metastasis or higher TNM stages, and associated with shorter overall survival of LUAD patients. ST7-AS1 essentially maintained the viability, migration, invasion, and EMT of LUAD cells. The oncogenic activities of ST7-AS1 were accomplished by sponging miR-181b-5p and releasing the suppression of the latter on KPNA4. In LUAD tissues, ST7-AS1 level positively correlated with that of KPNA4 and negatively with miR-181b-5p level. In vivo, targeting ST7-AS1 significantly inhibited xenograft growth and metastasis. Conclusions ST7-AS1, by regulating miR-181b-5p/KPNA4 axis, promotes the malignancy of LUAD cells. Targeting ST7-AS1 and KPNA4 or up-regulating miR-181b-5p, therefore, may benefit the treatment of LUAD.


2018 ◽  
Vol 47 (1) ◽  
pp. 245-256 ◽  
Author(s):  
Fengming Yang ◽  
Ke Wei ◽  
Zhiqiang Qin ◽  
Weitao Liu ◽  
Chuchu Shao ◽  
...  

Background/Aims: MicroRNAs regulate a wide range of biological processes of non-small cell lung cancer (NSCLC). Although miR-598 has been reported to act as a suppressor in osteosarcoma and colorectal cancer, the physiological function of miR-598 in NSCLC remains unknown. In this study, the role of miR-598 in NSCLC was investigated. Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to estimate the expression of miR-598 and Derlin-1 (DERL1) in both NSCLC tissues and cell lines. Immunohistochemistry (IHC) analyzed the association between the miR-598 expression and epithelial-mesenchymal transition (EMT) hallmark genes (E-cadherin, Vimentin) by staining the tumors representative of the high- and low-expression groups. The effect of miR-598 and DERL1 on invasion and migration was determined in vitro using transwell and wound-healing assays. The molecular mechanism underlying the relevance between miR-598 and DERL1 was elucidated by luciferase assay and Western blot. Western blot assessed the expression levels of EMT hallmark genes in cell lines. Xenograft tumor formation assay was conducted as an in vivo experiment. Results: In this study, a relatively low level of miR-598 and high DERL1 expressions were found in NSCLC specimens and cell lines. IHC results established a positive correlation between the miR-598 expression and E-cadherin and a negative with Vimentin. DERL1 was verified as a direct target of miR-598 by luciferase assay. In vitro, the over-expression of miR-598 negatively regulated DERL1 and EMT for the suppression of invasion and migration. In vivo, the over-expression of miR-598 could inhibit tumor cell metastasis in NSCLC. Conclusions: These findings for the first time revealed that miR-598, as a tumor suppressor, negatively regulate DERL1 and EMT to suppress the invasion and migration in NSCLC, thereby putatively serving as a novel therapeutic target for NSCLC clinical treatment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jie Wang ◽  
Zhiwei He ◽  
Jian Xu ◽  
Peng Chen ◽  
Jianxin Jiang

AbstractAn accumulation of evidence indicates that long noncoding RNAs are involved in the tumorigenesis and progression of pancreatic cancer (PC). In this study, we investigated the functions and molecular mechanism of action of LINC00941 in PC. Quantitative PCR was used to examine the expression of LINC00941 and miR-335-5p in PC tissues and cell lines, and to investigate the correlation between LINC00941 expression and clinicopathological features. Plasmid vectors or lentiviruses were used to manipulate the expression of LINC00941, miR-335-5p, and ROCK1 in PC cell lines. Gain or loss-of-function assays and mechanistic assays were employed to verify the roles of LINC00941, miR-335-5p, and ROCK1 in PC cell growth and metastasis, both in vivo and in vitro. LINC00941 and ROCK1 were found to be highly expressed in PC, while miR-335-5p exhibited low expression. High LINC00941 expression was strongly associated with larger tumor size, lymph node metastasis, and poor prognosis. Functional experiments revealed that LINC00941 silencing significantly suppressed PC cell growth, metastasis and epithelial–mesenchymal transition. LINC00941 functioned as a molecular sponge for miR-335-5p, and a competitive endogenous RNA (ceRNA) for ROCK1, promoting ROCK1 upregulation, and LIMK1/Cofilin-1 pathway activation. Our observations lead us to conclude that LINC00941 functions as an oncogene in PC progression, behaving as a ceRNA for miR-335-5p binding. LINC00941 may therefore have potential utility as a diagnostic and treatment target in this disease.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Bei Li ◽  
Ang Li ◽  
Zhen You ◽  
Jingchang Xu ◽  
Sha Zhu

Abstract Enhanced SNHG1 (small nucleolar RNA host gene 1) expression has been found to play a critical role in the initiation and progression of hepatocellular carcinoma (HCC) with its detailed mechanism largely unknown. In this study, we show that SNHG1 promotes the HCC progression through epigenetically silencing CDKN1A and CDKN2B in the nucleus, and competing with CDK4 mRNA for binding miR-140-5p in the cytoplasm. Using bioinformatics analyses, we found hepatocarcinogenesis is particularly associated with dysregulated expression of SNHG1 and activation of the cell cycle pathway. SNHG1 was upregulated in HCC tissues and cells, and its knockdown significantly inhibited HCC cell cycle, growth, metastasis, and epithelial–mesenchymal transition (EMT) both in vitro and in vivo. Chromatin immunoprecipitation and RNA immunoprecipitation assays demonstrate that SNHG1 inhibit the transcription of CDKN1A and CDKN2B through enhancing EZH2 mediated-H3K27me3 in the promoter of CDKN1A and CDKN2B, thus resulting in the de-repression of the cell cycle. Dual-luciferase assay and RNA pulldown revealed that SNHG1 promotes the expression of CDK4 by competitively binding to miR-140-5p. In conclusion, we propose that SNHG1 formed a regulatory network to confer an oncogenic function in HCC and SNHG1 may serve as a potential target for HCC diagnosis and treatment.


2019 ◽  
Vol 97 (6) ◽  
pp. 767-776 ◽  
Author(s):  
Yufu Tang ◽  
Lijian Wu ◽  
Mingjing Zhao ◽  
Guangdan Zhao ◽  
Shitao Mao ◽  
...  

Long noncoding RNA small nucleolar RNA host gene 4 (SNHG4) is usually up-regulated in cancer and regulates the malignant behavior of cancer cells. However, its role in lung cancer remains elusive. In this study, we silenced the expression of SNHG4 in NCI-H1437 and SK-MES-1, two representative non-small-cell lung cancer cell lines, by transfecting them with siRNA (small interfering RNA) that specifically targets SNHG4. We observed significantly inhibited cell proliferation in vitro and reduced tumor growth in vivo after SNHG4 silencing. SNHG4 knockdown also led to cell cycle arrest at the G1 phase, accompanied with down-regulation of cyclin-dependent kinases CDK4 and CDK6. The migration and invasiveness of these two cell lines were remarkably inhibited after SNHG4 silencing. Moreover, our study revealed that the epithelial–mesenchymal transition (EMT) of lung cancer cells was suppressed by SNHG4 silencing, as evidenced by up-regulated E-cadherin and down-regulated SALL4, Twist, and vimentin. In addition, we found that SNHG4 silencing induced up-regulation of miR-98-5p. MiR-98-5p inhibition abrogated the effect of SNHG4 silencing on proliferation and invasion of lung cancer cells. In conclusion, our findings demonstrate that SNHG4 is required by lung cancer cells to maintain malignant phenotype. SNHG4 probably exerts its pro-survival and pro-metastatic effects by sponging anti-tumor miR-98-5p.


2017 ◽  
Vol 42 (4) ◽  
pp. 1670-1683 ◽  
Author(s):  
Yiran Si ◽  
Haiyang Zhang ◽  
Tao Ning ◽  
Ming Bai ◽  
Yi Wang ◽  
...  

Background/Aims: Abnormal expression of HGF is found in various cancers and correlates with tumor proliferation, metastasis and angiogenesis. However, the regulatory mechanism of the HGF-VEGF axis remains unclear. Methods: The expression characteristic of HGF in human gastric cancer tissues was shown by an immunohistochemistry assay, and the expression levels of target protein were detected by Western blot. The relative levels of miR-26a/b and target mRNA were examined by qRT-PCR. We used bioinformatics tools to search for miRNAs that can potentially target HGF. A luciferase assay was used to confirm direct targeting. Furthermore, the functions of miR-26a/b and HGF were evaluated by cell proliferation and migration assays in vitro and by the mouse xenograft tumor model in vivo. Results: We found that the HGF protein was clearly increased while miR-26a/b were dramatically down-regulated in gastric cancer. miR-26a/b directly bind to the 3’-UTR of HGF mRNA at specific targeting sites. We demonstrated that the repression of the HGF-VEGF pathway by miR-26a/b overexpression suppressed gastric cancer cell proliferation and migration. Furthermore, miR-26a/b also showed an anti-tumor effect in the xenograft mouse model by suppressing tumor growth and angiogenesis. Conclusions: miR-26a/b could suppress tumor tumorigenesis and angiogenesis by targeting the HGF-VEGF axis and could serve as a potential treatment modality for targeted therapy in the clinical treatment of gastric cancer.


Author(s):  
Donglan Huang ◽  
Ke Zhang ◽  
Wenying Zheng ◽  
Ruixin Zhang ◽  
Jiale Chen ◽  
...  

Abstract Background Although thousands of long noncoding RNAs (lncRNAs) have been annotated, only a few lncRNAs have been characterized functionally. In this study, we aimed to identify novel lncRNAs involved in the progression of gastric carcinoma (GC) and explore their regulatory mechanisms and clinical significance in GC. Methods A lncRNA expression microarray was used to identify differential lncRNA expression profiles between paired GCs and adjacent normal mucosal tissues. Using the above method, the lncRNA SGO1-AS1 was selected for further study. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and in situ hybridization (ISH) were performed to detect SGO1-AS1 expression in GC tissues. Gain-of-function and loss-of-function analyses were performed to investigate the functions of SGO1-AS1 and its upstream and downstream regulatory mechanisms in vitro and in vivo. Results SGO1-AS1 was downregulated in gastric carcinoma tissues compared to adjacent normal tissues, and its downregulation was positively correlated with advanced clinical stage, metastasis status and poor patient prognosis. The functional experiments revealed that SGO1-AS1 inhibited GC cell invasion and metastasis in vitro and in vivo. Mechanistically, SGO1-AS1 facilitated TGFB1/2 mRNA decay by competitively binding the PTBP1 protein, resulting in reduced TGFβ production and, thus, preventing the epithelial-to-mesenchymal transition (EMT) and metastasis. In addition, in turn, TGFβ inhibited SGO1-AS1 transcription by inducing ZEB1. Thus, SGO1-AS1 and TGFβ form a double-negative feedback loop via ZEB1 to regulate the EMT and metastasis. Conclusions SGO1-AS1 functions as an endogenous inhibitor of the TGFβ pathway and suppresses gastric carcinoma metastasis, indicating a novel potential target for GC treatment.


2022 ◽  
Vol 2022 ◽  
pp. 1-23
Author(s):  
Yan Shi ◽  
Shang Wang ◽  
Ronghua Yang ◽  
Zhenmin Wang ◽  
Weiwei Zhang ◽  
...  

We previously showed that wound-induced hypoxia is related to keratinocyte migration. The ability of keratinocytes within wound healing to undergo epithelial to mesenchymal transition (EMT) contributes significantly to the acquisition of migratory properties. However, the effect of hypoxia on keratinocyte EMT on wound healing and the potential mechanism are poorly documented. This study first demonstrated that reactive oxygen species (ROS) appear to be an essential signalling mediator in keratinocytes with increased EMT and migration subjected to hypoxic conditions. Next, we showed that the expression of sex-determining region Y-box 2 (SOX2), a stemness-associated molecule, is ROS-dependent under hypoxia and that SOX2 inhibition in keratinocytes dramatically prevented hypoxia-induced EMT and migration. In addition, β-catenin was found to be a potential molecular target of SOX2, and the activation of Wnt/β-catenin was required for hypoxia-induced EMT and migration. Using an in vitro skin culture model and an in vivo skin wound model, our study further reinforced the critical role of ROS in inducing EMT through SOX2 expression and subsequent activation of Wnt/β-catenin, allowing for rapid reepithelialization of the wound area. Taken together, our findings reveal a previously unknown mechanism by which hypoxia promotes wound healing by promoting reepithelialization through the production of ROS, inducing keratinocyte EMT and migration via the enhancement of SOX2 and activation of Wnt/β-catenin.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yibin Zhao ◽  
Hongyi Zhou ◽  
Jie Shen ◽  
Shaohui Yang ◽  
Ke Deng ◽  
...  

BackgroundDysregulated microRNAs (miRNAs) are common in human cancer and are involved in the proliferation, promotion, and metastasis of tumor cells. Therefore, this study aimed to evaluate the expression and biological function of miR-1236-3p in colon cancer.MethodsThis study screened the miRNA in normal and colon cancer tissues through array analysis. In addition, quantitative Reverse Transcription–Polymerase Chain Reaction (qRT-PCR) analysis was performed to validate the expression of miR-1236-3p in normal and tumor tissues from colon cancer patients and cancer cell lines. Online predicting algorithms and luciferase reporter assays were also employed to confirm Doublecortin Like Kinase 3 (DCLK3) was the target for miR-1236-3p. Moreover, the impact of miR-1236-3p on the progression of colon cancer was evaluated in vitro and in vivo. Western blotting and qRT-PCR were also performed to investigate the interactions between miR-1236-3p and DCLK3.ResultsMiR-1236-3p was significantly downregulated in colon cancer tissues and its expression was associated with the TNM stage and metastasis of colon. In addition, the in vitro and in vivo experiments showed that miR-1236-3p significantly promoted cancer cell apoptosis and inhibited the proliferation, invasion, and migration of cancer cells. The results also showed that miR-1236-3p hindered Epithelial–mesenchymal Transition (EMT) by targeting DCLK3. Moreover, the expression of DCLK3 mediated the effects of miR-1236-3p on the progression of cancer.ConclusionsMiR-1236-3p functions as a tumor suppressor in colon cancer by targeting DCLK3 and is therefore a promising therapeutic target for colon cancer.


Author(s):  
Minmin Song ◽  
Chenrui Cao ◽  
Zhenhua Zhou ◽  
Simin Yao ◽  
Peipei Jiang ◽  
...  

Abstract Intrauterine adhesions (IUAs), the leading cause of uterine infertility, are characterized by endometrial fibrosis. The management of IUA is challenging because the pathogenesis of the disease largely unknown. In this study, we demonstrate that the mRNA and protein levels of high mobility group AT-hook 2 (HMGA2) were increased by nearly 3-fold (P < 0.0001) and 5-fold (P = 0.0095) in the endometrial epithelial cells (EECs) of IUA patients (n = 18) compared to controls. In vivo and in vitro models of endometrial fibrosis also confirmed the overexpression of HMGA2 in EECs. In vitro cell experiments indicated that overexpression of HMGA2 promoted the epithelial–mesenchymal transition (EMT) while knockdown of HMGA2 reversed transforming growth factor-β-induced EMT. A dual luciferase assay confirmed let-7d microRNA downregulated HMGA2 and repressed the pro-EMT effect of HMGA2 in vitro and in vivo. Therefore, our data reveal that HMGA2 promotes IUA formation and suggest that let-7d can depress HMGA2 and may be a clinical targeting strategy in IUA.


Sign in / Sign up

Export Citation Format

Share Document