Strength and Permeability of Bentonite-Assisted Biocemented Coarse Sand

Author(s):  
Guoliang Ma ◽  
Xiang He ◽  
Xiang Jiang ◽  
Hanlong Liu ◽  
Jian Chu ◽  
...  

To effectively stabilize coarse sand, bentonite was introduced in microbially induced carbonate precipitation (MICP) grouting. Varying concentrations (0 g/L, 20 g/L, 40 g/L and 80 g/L) of bentonite were added to bacterial suspensions (BSs), which were magnetically stirred to form bacterial-bentonite suspensions (BBSs). Then, coarse sand specimens were treated with BBSs and cementation solutions (CSs) to different cementation levels. The results showed that the addition of bentonite could increase the volume fractions of the precipitates consisting of calcium carbonate (CaCO3) and bentonite. The permeability decreased exponentially as the volume fraction of precipitates increased. As the active precipitates increased when a lower concentration (e.g., 20 g/L) of bentonite was added to the MICP grouting, the unconfined compressive strength (UCS) was substantially improved. However, detrimental effects were observed for specimens treated with a high concentration of bentonite. These results indicate that the effective concentration of natural clay aggregates used in MICP grouting was different for different engineering applications, e.g., seepage control and strength enhancement. The current work provides an encouraging method of improving the MICP technique.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Charalampos Konstantinou ◽  
Yuze Wang ◽  
Giovanna Biscontin ◽  
Kenichi Soga

AbstractProtocols for microbially induced carbonate precipitation (MICP) have been extensively studied in the literature to optimise the process with regard to the amount of injected chemicals, the ratio of urea to calcium chloride, the method of injection and injection intervals, and the population of the bacteria, usually using fine- to medium-grained poorly graded sands. This study assesses the effect of varying urease activities, which have not been studied systematically, and population densities of the bacteria on the uniformity of cementation in very coarse sands (considered poor candidates for treatment). A procedure for producing bacteria with the desired urease activities was developed and qPCR tests were conducted to measure the counts of the RNA of the Ure-C genes. Sand biocementaton experiments followed, showing that slower rates of MICP reactions promote more effective and uniform cementation. Lowering urease activity, in particular, results in progressively more uniformly cemented samples and it is proven to be effective enough when its value is less than 10 mmol/L/h. The work presented highlights the importance of urease activity in controlling the quality and quantity of calcium carbonate cements.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
J. Z. Xiao ◽  
Y. Q. Wei ◽  
H. Cai ◽  
Z. W. Wang ◽  
T. Yang ◽  
...  

Currently, calcite produced in sediments by microbial-induced carbonate precipitation (MICP) is mainly used as a strengthening binder in sand because sands are porous and have good permeability. Conventional wisdom does not consider MICP to be suitable for use in soft clay because of the clay particles’ small size and its minimal porosity. Because of the clay’s high water content and complex chemical composition, very little research has been done and not much is known about the use of MICP in soft clay for strength enhancement. For this paper, soft clay specimens were prepared by mixing a solution containing Sporosarcina pasteurii bacteria, solutions with different concentrations of nutrient salts, and soft clay. Unconfined compressive strength tests were carried out on these specimens after they had cured for 28 days in a moisture-controlled environment. These laboratory tests were used to study the chemical reactions, the clay’s strength, and other influencing factors. The results are as follows: (1) directly mixing a S. pasteurii solution, nutrient salts, and soft clay considerably improves the uniformity of the spatial distribution of the bacteria and the nutrients in the soft clay. Directly mixing these constituents promotes the formation of calcium carbonate and greatly simplifies soft clay sample preparation. (2) It is feasible to use MICP to increase the strength of soft clay. Compared to control specimens cured under the same conditions but without introduced nutrients and bacteria solution, the unconfined compressive strength of MICP-treated specimens can be increased by as much as 2.42 times to an unconfined compressive strength of 43.31 kPa. The water content in MICP-treated specimens was significantly reduced by the MICP reactions and in one case decreased from 40% to 30.73%. (3) The strength enhancement of microbially solidified soft clay is the result of two processes: urea hydration catalyzed by enzymes consumes water in the clay and the bacterially precipitated calcite forms in the sediment’s pores. (4) The micro-organism-produced calcite in the soft clay increases the calcite abundance from 0% to as much as 3.5%. (5) The MICP-treated strength of soft clay varies with the concentration of the nutrients provided. For the experimental conditions used for this paper, the optimum concentration of the CaCl2·2H2O and CH4N2O nutrients is 0.5 mol/L.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5140
Author(s):  
Yixin Mo ◽  
Songlin Yue ◽  
Qizhen Zhou ◽  
Xiao Liu

Recently, microbially induced carbonate precipitation (MICP) has been studied as an alternative for the improvement of sand–clay mixtures. However, the cementing uniformity of MICP-treated sand–clay mixtures cannot be guaranteed. In this present study, enzymatic-induced carbonate precipitation (EICP) was used to deal with it. The ions used in kaolin clay was predicted to affect the production rate for calcium carbonate (CaCO3), which was studied using the calcification test. The solidification test was conducted using two different methods (the premixing method and the diffusion method). The permeability, unconfined compressive strength and the content of CaCO3 of treated samples were obtained to evaluate the solidification effect of the EICP method. Moreover, in EICP treatment, the particle aggregation decreased the liquid limit, but the addition of solution increased it. Therefore, there were contrary effects to the soil consistency. In this study, the two types of liquid limits of treated samples were measured with deionized water and 2M-NaCl brine, respectively. The results show that the Al2O3, NaCl and MgCl2 in the kaolin clay had a slight impact on the production rate for CaCO3, while FeCl3 significantly inhibited it. The EICP method can improve sand–clay mixtures and decrease their permeability. Different from MICP, the EICP method can guarantee the uniformity of treated samples. Moreover, the liquid limit of the sample treated with the premixing method decreased, while that of the sample treated with the diffusion method increased firstly and then decreased with the increasing treatment cycles. Different from the deionized water, the pore-fluid chemistry had a larger effect on the liquid limit with 2M-NaCl brine.


2012 ◽  
Vol 16 (5) ◽  
pp. 1519-1523
Author(s):  
Pei-Feng Lin ◽  
Di-Chong Wu ◽  
Ze-Fei Zhu

Ultra-fine particle coagulation by Brownian motion at high concentration in planar jet flow is simulated. A Taylor-Series Expansion Method of Moments is employed to solve the particle general dynamic equation. The volume fraction gets high value, very closes to that at the nozzle exit. As the vortex pairing develops, the high volume fraction region rolls out and mixes with the low value region. The enhancement factor given by Trzeciak et al. will be less than one at some specific outer positions, which seems to be less accurate than the one given by Heine et al.


IFCEE 2021 ◽  
2021 ◽  
Author(s):  
Xichen Xu ◽  
Hongtao Wang ◽  
Wenbin Lin ◽  
Xiaohui Cheng ◽  
Hongxian Guo

2021 ◽  
Vol 21 (2) ◽  
pp. 7-11
Author(s):  
Ahmed Mansoor Abbood ◽  
Haider K. Mehbes ◽  
Abdulkareem. F. Hasan

In this study, glass-filled epoxy functionally graded material (FGM) was prepared by adopting the hand lay-up method. The vertical gravity casting was used to produce a continuous variation in elastic properties. A 30 % volume fraction of glass ingredients that have mean diameter 90 μm was spread in epoxy resin (ρ = 1050 kg/m3). The mechanical properties of FGM were evaluated according to ASTM D638. Experimental results showed that a gradually relationship between Young’s modulus and volume fraction of glass particles, where the value of Young’s modulus at high concentration of glass particles was greater than that at low concentration, while the value of Poisson’s ratio at high concentration of glass particles was lower than that at low concentration. The manufacture of this FG beam is particularly important and useful in order to benefit from it in the field of various fracture tests under dynamic or cyclic loads.


2007 ◽  
Vol 26 (4) ◽  
pp. 229-244 ◽  
Author(s):  
Bibin John ◽  
C.P. Reghunadhan Nair ◽  
K.N. Ninan

Low-density phenolic syntactic foams with different volume percentages of microballoons were processed and their mechanical performance has been evaluated in terms of tensile, flexural, compressive and the corresponding specific properties. Tensile and flexural strength increased with volume fraction of microballoon and optimized at 72–74 percentage by volume of microballoon. Both the properties decreased with further addition of microballoon. The corresponding specific properties also manifested a similar order. Compressive and specific compressive strength decreased with increase in microballoon volume percentage. The flexural and compressive modulus values followed the same trend as the strength values. The properties of phenolic syntactic foams were compared with syntactic foams based on an addition cure phenolic resin, Propargyl Ether Novolac resin (PN). The mechanical properties of the latter were inferior to those of phenolic syntactic foams. The morphology of the failed samples as examined by SEM showed that failure occurred by a combination of matrix and microballoon failure at low microballoon loading whereas it occurred by microballoon cracking and resin to microballoon debonding at high concentration of filler. The dynamic mechanical analysis of phenolic and PN resin syntactic foams showed a higher use temperature for PN system in comparison to phenolic.


Sign in / Sign up

Export Citation Format

Share Document