Facile approach for synthesis of stable, efficient, and recyclable ZnO through pulsed sonication and its application for degradation of recalcitrant azo dyes in wastewater

2018 ◽  
Vol 96 (10) ◽  
pp. 897-905 ◽  
Author(s):  
G. Kumaravel Dinesh ◽  
Rameshkumar Saranya

In the present study, the ultrasound in pulsed mode was used as a part of an advanced oxidation method. The influence of the pulsed ultrasound mode for the preparation of the zinc oxide (ZnO) wurtzite nanoparticle was investigated. The catalysts synthesized were analysed using SEM, TEM, EDAX, BET surface area, XRD, and DRS to study their morphological and structural characterizations. The ZnO nanoparticles exhibited a highly hexagonal structure from pulsed sonication synthesis route. The efficiency of the decolourization of the reactive red 4 (RR4) dye was studied under different operation parameters such as dye concentration, initial solution pH, oxidant (e.g., H2O2) concentration, and catalyst loading. The hybrid combined process of pulsed sonolysis, pH (4.0), H2O2 (17.64 mmol), and catalyst (0.35 g/L) achieved 97% degradation and 87.5% chemical oxygen demand removal in about 20 min of reaction time. The cyclic degradation studies of RR4 removal with 0.35 g/L of ZnO showed the reusability of catalyst up to the fifth removal cycle with negligible loss in the catalytic performance. GC–MS study, used for the detection of the RR4 intermediates, revealed the oxidation–reduction reaction by the reactive radicals proceeded via the reductive cleavage of the azo bonds. The studied process, based on the pulsed ultrasound, is found to be effective for the degradation of RR4 dye.

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
M. A. Nawi ◽  
Y. S. Ngoh ◽  
S. M. Zain

Commercially acquired TiO2photocatalyst (99% anatase) powder was mixed with epoxidized natural rubber-50 (ENR50)/polyvinyl chloride (PVC) blend by ultrasonication and immobilized onto glass plates as TiO2-ENR50-PVC composite via a dip-coating method. Photoetching of the immobilized TiO2-ENR50-PVC composite was investigated under the irradiation of a 45 W compact fluorescent lamp and characterized by chemical oxygen demand (COD) analysis, scanning electron microscopy-energy dispersive X-ray (SEM-EDX) spectrometry, thermogravimetry analysis (TGA), and fourier transform infrared (FTIR) spectroscopy. The BET surface area of the photoetched TiO2composite was observed to be larger than the original TiO2powder due to the systematic removal of ENR50while PVC was retained within the composite. It also exhibited better photocatalytic efficiency than the TiO2powder in a slurry mode and was highly reproducible and reusable. More than 98% of MB removal was consistently achieved for 10 repeated runs of the photo-etched photocatalyst system. About 93% of the 20 mg L−1MB was mineralized over a period of 480 min. The presence of , , and Cl−anions was detected in the mineralized solution where the solution pH was reduced from 7 to 4.


2021 ◽  
Vol 10 (1) ◽  
pp. 13-20
Author(s):  
Thien Tran Vinh ◽  
Tu Nguyen Thi Thanh ◽  
Son Bui Hai Dang

The paper presents the modification of Phu Yen diatomite by oxidation-reduction reaction between Fe (II) and KMnO4 salts in solution pH = 6 on the diatomite surface. Characteristics of modified materials and the influence of research factors on these characteristics were investigated using techniques XRD, EDX, XPS, SEM, TEM, BET. Arsenic adsorption capacity of modified materials, the influence of environmental factors on the adsorption capacity were also investigated and evaluated. The results showed that mixed oxide-modified diatomite has higher arsenic adsorption capacity than natural diatomite and modified diatomite by individual oxides.


Catalysts ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 360 ◽  
Author(s):  
Kullatida Ratchadapiban ◽  
Piyasan Praserthdam ◽  
Duangamol Tungasmita ◽  
Chutima Tangku ◽  
Wipark Anutrasakda

A series of protonated amino-functionalized SBA-15 materials was synthesized and tested as heterogeneous catalysts for the esterification of glycerol with oleic acid to produce monoolein. Mesoporous SBA-15 (S) was functionalized with three different aminosilanes: 3-aminopropyltriethoxysilane (N1); [3-(2-amino-ethylamino)propyltrimethoxysilane] (N2); and (3-trimethoxysilylpropyl) diethylenetriamine (N3), before being impregnated with 40 wt % 12-tungstophosphoric acid (HPW). The resulting nanocatalysts (S-Nx-HPW) were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), N2 adsorption-desorption, SEM equipped with energy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM), and elemental analysis techniques. The presence of components of the nanocatalysts and the preservation of the hexagonal structure of SBA-15 were confirmed. Using different functionalizing agents considerably affected the textural properties and acidity of the synthesized nanocatalysts, which helped to improve the catalytic performance. In particular, S-N2-HPW was more active and selective than other catalysts in this study, as well as than a number of other commercial acid catalysts, with 95.0% oleic acid conversion and 60.9% monoolein selectivity being obtained after five h of reaction at 160 °C using 2.5 wt % of catalyst loading and glycerol/oleic acid molar ratio of 4:1. Aminosilane functionalization also helped to increase the reusability of the catalysts to at least six cycles without considerable loss of activity through strong electrostatic interactions between HPW anions and the protonated amino-functionalized SBA-15 materials.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Wenyi Li ◽  
Ke Li ◽  
Yixing Ye ◽  
Shengbo Zhang ◽  
Yanyan Liu ◽  
...  

AbstractThe electrocatalytic nitrogen (N2) reduction reaction (NRR) relies on the development of highly efficient electrocatalysts and electrocatalysis systems. Herein, we report a non-loading electrocatalysis system, where the electrocatalysts are dispersed in aqueous solution rather than loading them on electrode substrates. The system consists of aqueous Ag nanodots (AgNDs) as the catalyst and metallic titanium (Ti) mesh as the current collector for electrocatalytic NRR. The as-synthesized AgNDs, homogeneously dispersed in 0.1 M Na2SO4 solution (pH = 10.5), can achieve an NH3 yield rate of 600.4 ± 23.0 μg h−1 mgAg−1 with a faradaic efficiency (FE) of 10.1 ± 0.7% at −0.25 V (vs. RHE). The FE can be further improved to be 20.1 ± 0.9% at the same potential by using Ti mesh modified with oxygen vacancy-rich TiO2 nanosheets as the current collector. Utilizing the aqueous AgNDs catalyst, a Ti plate based two-electrode configured flow-type electrochemical reactor was developed to achieve an NH3 yield rate of 804.5 ± 30.6 μg h−1 mgAg−1 with a FE of 8.2 ± 0.5% at a voltage of −1.8 V. The designed non-loading electrocatalysis system takes full advantage of the AgNDs’ active sites for N2 adsorption and activation, following an alternative hydrogenation mechanism revealed by theoretical calculations.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3347
Author(s):  
Arslan Mazhar ◽  
Asif Hussain Khoja ◽  
Abul Kalam Azad ◽  
Faisal Mushtaq ◽  
Salman Raza Naqvi ◽  
...  

Co/TiO2–MgAl2O4 was investigated in a fixed bed reactor for the dry reforming of methane (DRM) process. Co/TiO2–MgAl2O4 was prepared by modified co-precipitation, followed by the hydrothermal method. The active metal Co was loaded via the wetness impregnation method. The prepared catalyst was characterized by XRD, SEM, TGA, and FTIR. The performance of Co/TiO2–MgAl2O4 for the DRM process was investigated in a reactor with a temperature of 750 °C, a feed ratio (CO2/CH4) of 1, a catalyst loading of 0.5 g, and a feed flow rate of 20 mL min−1. The effect of support interaction with metal and the composite were studied for catalytic activity, the composite showing significantly improved results. Moreover, among the tested Co loadings, 5 wt% Co over the TiO2–MgAl2O4 composite shows the best catalytic performance. The 5%Co/TiO2–MgAl2O4 improved the CH4 and CO2 conversion by up to 70% and 80%, respectively, while the selectivity of H2 and CO improved to 43% and 46.5%, respectively. The achieved H2/CO ratio of 0.9 was due to the excess amount of CO produced because of the higher conversion rate of CO2 and the surface carbon reaction with oxygen species. Furthermore, in a time on stream (TOS) test, the catalyst exhibited 75 h of stability with significant catalytic activity. Catalyst potential lies in catalyst stability and performance results, thus encouraging the further investigation and use of the catalyst for the long-run DRM process.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1631
Author(s):  
Camila F. Olguín ◽  
Nicolás Agurto ◽  
Carlos P. Silva ◽  
Carolina P. Candia ◽  
Mireya Santander-Nelli ◽  
...  

Current selective modification methods, coupled with functionalization through organic or inorganic molecules, are crucial for designing and constructing custom-made molecular materials that act as electroactive interfaces. A versatile method for derivatizing surfaces is through an aryl diazonium salt reduction reaction (DSRR). A prominent feature of this strategy is that it can be carried out on various materials. Using the DSRR, we modified gold surface electrodes with 4-aminebenzene from 4-nitrobenzenediazonium tetrafluoroborate (NBTF), regulating the deposited mass of the aryl film to achieve covering control on the electrode surface. We got different degrees of covering: monolayer, intermediate, and multilayer. Afterwards, the ArNO2 end groups were electrochemically reduced to ArNH2 and functionalized with Fe(II)-Phthalocyanine to study the catalytic performance for the oxygen reduction reaction (ORR). The thickness of the electrode covering determines its response in front of ORR. Interestingly, the experimental results showed that an intermediate covering film presents a better electrocatalytic response for ORR, driving the reaction by a four-electron pathway.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 974
Author(s):  
Bing Han ◽  
Haihong Meng ◽  
Fengyu Li ◽  
Jingxiang Zhao

Under the current double challenge of energy and the environment, an effective nitrogen reduction reaction (NRR) has become a very urgent need. However, the largest production of ammonia gas today is carried out by the Haber–Bosch process, which has many disadvantages, among which energy consumption and air pollution are typical. As the best alternative procedure, electrochemistry has received extensive attention. In this paper, a catalyst loaded with Fe3 clusters on the two-dimensional material C2N (Fe3@C2N) is proposed to achieve effective electrochemical NRR, and our first-principles calculations reveal that the stable Fe3@C2N exhibits excellent catalytic performance for electrochemical nitrogen fixation with a limiting potential of 0.57 eV, while also suppressing the major competing hydrogen evolution reaction. Our findings will open a new door for the development of non-precious single-cluster catalysts for effective nitrogen reduction reactions.


2021 ◽  
Vol 13 (1) ◽  
pp. 11
Author(s):  
Gabriela Vasco ◽  
Gabriel Trueba

Opportunistic bacteria Pseudomonas aeruginosa is one of the major concerns as an etiological agent of nosocomial infections in humans. Many virulence factors used to colonize the human body are the same as those used by P. aeruginosa to thrive in the environment such as membrane transport, biofilm formation, oxidation/reduction reaction, among others. P. aeruginosa origin is mainly from the environment, the adaptation to mammalian tissues may follow a source-sink evolution model; the environment is the source of many lineages, some of them capable of adaptation to the human body. Some lineages may adapt to humans and go through reductive evolution in which some genes are lost.  The understanding of this process may be critical to implement better methods to control outbreaks in hospitals.


2021 ◽  
Vol 13 (3) ◽  
pp. 371-380
Author(s):  
Yongjun Wu ◽  
Nina Xie ◽  
Lu Yu

A novel Ag–Si–TiO2 composite was prepared via sol–gel method for removing residual formaldehyde in shiitake mushroom. The structure of Ag–Si–TiO2 composite was characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. Ultraviolet-visible absorption spectroscopy (UV-Vis) and N2 adsorption-desorption tests showed that Ag and Si co-doped decreased the band gap, the Brunauer-Emmett-Teller (BET) specific surface area of the samples increased and the recombination probability of electron-hole pairs (e--h+) reduced. Effect on removal rate of formaldehyde with different Ag-Si co-doped content, formaldehyde concentration and solution pH were investigated, and the results showed that 6.0 wt%Ag-3.0 wt%Si-TiO2 samples had an optimum catalytic performance, and the degradation efficiency reached 96.6% after 40 W 365 nm UV lamp irradiation for 360 min. The kinetics of formaldehyde degradation by Ag–Si–TiO2 composite photocatalyst could be described by Langmuir-Hinshelwood first-order kinetic model.


Sign in / Sign up

Export Citation Format

Share Document