Upper-crustal orogenic lid and mid-crustal core complexes: signature of a collapsed orogenic plateau in the hinterland of the Grenville Province 1This article is one of a series of papers published in CJES Special Issue: In honour of Ward Neale on the theme of Appalachian and Grenvillian geology.

2012 ◽  
Vol 49 (1) ◽  
pp. 1-42 ◽  
Author(s):  
Toby Rivers

This paper provides a re-interpretation of the crustal architecture of the Ottawan hinterland of the Grenville Province in light of published empirical and numerical models of orogenic collapse. It is now seen as a series of high-grade, mid-crustal core complexes from tens to hundreds of kilometres across that are juxtaposed against segments of the lower grade upper and uppermost crust including the orogenic lid. Juxtaposition of such contrasting crustal levels, which exhibit decoupled tectonic styles corresponding to the orogenic infrastructure and suprastructure, respectively, is interpreted as a signature of the foundering of an orogenic plateau into a mid-crustal channel. Ottawan metamorphism progressed from granulite-facies in the mid crust at ∼1090–1050 Ma, through amphibolite-facies in the upper crust at ∼1050–1020 Ma, to heating to ≤500 °C in the uppermost crust at ∼1020–980 Ma. This temporal progression is interpreted to reflect conductive heat transfer during collapse, as hot mid-crustal core complexes were exhumed against successively higher crustal levels. Exhumation was facilitated by substantial thinning and lengthening of the mid crust by simple- and pure-shear mechanisms. This was accompanied by wholesale boudinage of the brittle uppermost crust. Moreover, it may have resulted in excision of part of the ductile upper crust, which appears under-represented. Collapse was accompanied by diverse magmatic and hydrothermal products, their range of structural states implying that high-strain Ottawan deformation in the mid crust took place beneath an orogenic lid that was not penetratively deformed. Preliminary analysis indicates the Grenvillian inliers exhibit a comparable range of crustal levels to the Grenville Province, suggesting the orogenic plateau may have extended ∼5000 km along strike from Labrador to Texas.


2005 ◽  
Vol 42 (10) ◽  
pp. 1907-1925 ◽  
Author(s):  
N Culshaw

Low-plunging, transport-parallel F3 folds are common at all scales in the Central Gneiss Belt of the Grenville Province, but few of these folds are sheath folds. Where the D1–D2 Parry Sound shear zone intersects the D3 Shawanaga shear zone (SSZ) at a high angle, F3 folds formed at several scales (centimetre to greater than outcrop scale) in layered D1–D2 "straight" gneisses. At the start of their evolution, the F3 folds formed just beyond the SSZ with hinges near orthogonal to the D3 shear direction and with typical buckle features, e.g., wavelengths vary with layer thickness, and hinges are discontinuous and bifurcate. The buckle folds evolved within the SSZ by rotation of hinges towards the shear direction. Even though hinges initiated at a high angle to the shear direction, sheath folds were not produced. In addition to tightening the buckles, the ductile reorientation produced thin–thick (extended–shortened) limb pairs and very straight, ridge-like fold hinges and removed small folds from the extended limbs of larger folds. Such features may serve as criteria to distinguish transport-parallel folds that initiated in layering at high angles to the shear direction from those formed in layers containing the shear direction. A general shear parallel to the SSZ can reproduce several features inferred to mark stages in the progressive reorientation of the folds; the pure shear component of the general shear is inferred to have had a positive stretch direction down the dip of the shear zone, at a high angle to the transport (simple shear) direction. The interplay of buckling and shearing in the study area is, plausibly, the expression of deformation at the upper boundary of a channel-like flow that succeeded initial crustal thickening.



1983 ◽  
Vol 20 (12) ◽  
pp. 1791-1804 ◽  
Author(s):  
T. Rivers

Aphebian metapelites and quartzofeldspathic rocks from the Grenville Province south of the Labrador Trough display progressive changes in mineral assemblages as a result of Grenvillian metamorphism, consistent with variation in grade from greenschist to upper amphibolite facies. The following metamorphic zones have been delineated: (i) chlorite–muscovite; (ii) chlorite–muscovite–biotite; (iii) chlorite–muscovite–biotite–garnet; (iv) muscovite–staurolite–kyanite; (v) muscovite–garnet–biotite–kyanite; (vi) muscovite–garnet–biotite–kyanite–granitic veins; (vii) K–feldspar–kyanite – granitic veins; (viii) K-feldspar–sillimanite–granitic veins. Reactions linking the lower grade metamorphic zones are interpreted to be dehydration phenomena, whilst anatectic reactions occur at higher grades. At lower metamorphic grades aH2O was high [Formula: see text] but it declined progressively as water entered the melt phase during higher grade anatectic reactions. With the onset of vapour-absent anatexis, the restite assemblage became essentially "dry" [Formula: see text], and biotite breakdown occurred in granulite-facies rocks east of the study area. Consideration of available experimental data suggests that metamorphic temperatures ranged from approximately 450 to 750 °C across the study area. Lithostatic pressure during metamorphism reached about 8 kbar (800 MPa) in the high-grade zones, with estimates at lower grades being poorly constrained; however, a steep pressure gradient across the map area is postulated.This is the first reported occurrence of bathozone 6 assemblages from a progressive metamorphic sequence, and it indicates the presence of an unusually great thickness of supracrustal rocks during the Grenvillian Orogeny. This was achieved by imbricate stacking of thrust slices, perhaps doubling the thickness of the crust in the Grenville Front Tectonic Zone, creating a huge gravity anomaly of which a remnant still persists today.



2017 ◽  
Vol 54 (11) ◽  
pp. 1103-1118 ◽  
Author(s):  
Mackenzie Patrick ◽  
Aphrodite Indares

A large portion of the hinterland of the central Grenville Province is characterized by mid-pressure granulite-facies metamorphic rocks. In the Manicouagan – Lac du Milieu region of Quebec, aluminous gneisses derived from hydrothermally altered felsic protoliths provide a record of anatectic processes and of the pressure–temperature (P–T) evolution during orogenesis. Samples collected in areas separated by several tens of kilometres consist of garnet + biotite + quartz + K-feldspar ± plagioclase ± sillimanite, with retrograde cordierite in some, and most display microstructural evidence of partial melting. However, they have a wide range of bulk compositions and textures, and may be grouped into two types: sillimanite-rich rocks, with a high alumina index and sillimanite-poor rocks with low alumina index and in which sillimanite is not part of the peak assemblage. Phase equilibria modeling with THERMOCALC software constrained the P–T field of the peak mineral assemblage(s) at 800–900 °C and 6–11 kbar (1 kbar = 100 MPa), with melt solidification in the range of 800–865 °C and 6–8 kbar. The presence of sillimanite inclusions in garnet, and the scarcity of retrograde cordierite are consistent with moderate dP/dT gradient “hairpin” P–T paths. The data suggest that this part of the mid-P hinterland in the central Grenville experienced a rather uniform high-temperature metamorphic evolution, with large temperature variations relative to pressure. This is consistent with the thermal evolution of middle crust beneath an orogenic plateau.



2011 ◽  
Vol 48 (2) ◽  
pp. 205-245 ◽  
Author(s):  
L. M. Heaman ◽  
Ch. O. Böhm ◽  
N. Machado ◽  
T. E. Krogh ◽  
W. Weber ◽  
...  

The Pikwitonei Granulite Domain located at the northwestern margin of the Superior Province is one of the largest Neoarchean high-grade terranes in the world, with well-preserved granulite metamorphic assemblages preserved in a variety of lithologies, including enderbite, opdalite, charnockite, and mafic granulite. U–Pb geochronology has been attempted to unravel the protolith ages and metamorphic history of numerous lithologies at three main localities; Natawahunan Lake, Sipiwesk Lake, and Cauchon Lake. The U–Pb age results indicate that some of the layered enderbite gneisses are Mesoarchean (3.4–3.0 Ga) and the more massive enderbites are Neoarchean. The high-grade metamorphic history of the Pikwitonei Granulite Domain is complex and multistage with at least four episodes of metamorphic zircon growth identified: (1) 2716.1 ± 3.8 Ma, (2) 2694.6 ± 0.6 Ma, (3) 2679.6 ± 0.9 Ma, and (4) 2642.5 ± 0.9 Ma. Metamorphic zircon growth during episodes 2 and 3 are interpreted to be regional in extent, corresponding to M1 amphibolite- and M2 granulite-facies events, respectively, consistent with previous field observations. The youngest metamorphic episode at 2642.5 Ma is only recognized at southern Cauchon Lake, where it coincides with granite melt production and possible development of a major northeast-trending deformation zone. The timing and multistage metamorphic history recorded in the Pikwitonei Granulite Domain is similar to most Superior Province high-grade terranes and marks a fundamental break in Archean crustal evolution worldwide at the termination of prolific global Neoarchean greenstone belt formation.



Geology ◽  
2021 ◽  
Author(s):  
Adam Brudner ◽  
Hehe Jiang ◽  
Xu Chu ◽  
Ming Tang

The Grenville Province on the eastern margin of Laurentia is a remnant of a Mesoproterozoic orogenic plateau that comprised the core of the ancient supercontinent Rodinia. As a protracted Himalayan-style orogen, its orogenic history is vital to understanding Mesoproterozoic tectonics and paleoenvironmental evolution. In this study, we compared two geochemical proxies for crustal thickness: whole-rock [La/Yb]N ratios of intermediate-to-felsic rocks and europium anomalies (Eu/Eu*) in detrital zircons. We compiled whole-rock geochemical data from 124 plutons in the Laurentian Grenville Province and collected trace-element and geochronological data from detrital zircons from the Ottawa and St. Lawrence River (Canada) watersheds. Both proxies showed several episodes of crustal thickening and thinning during Grenvillian orogenesis. The thickest crust developed in the Ottawan phase (~60 km at ca. 1080 Ma and ca. 1045 Ma), when the collision culminated, but it was still up to 20 km thinner than modern Tibet. We speculate that a hot crust and several episodes of crustal thinning prevented the Grenville hinterland from forming a high Tibet-like plateau, possibly due to enhanced asthenosphere-lithosphere interactions in response to a warm mantle beneath a long-lived supercontinent, Nuna-Rodinia.



Author(s):  
William H Peck ◽  
Matthew P Quinan

The Morin terrane is an allochthonous crustal block in the southwestern Grenville Province with a relatively poorly-constrained metamorphic history. In this part of the Grenville Province, some terranes were part of the ductile middle crust during the 1.09–1.02 Ga collision of Laurentia with the Amazon craton (the Ottawan phase of the Grenvillian orogeny), while other terranes were part of the orogen’s superstructure. New U-Pb geochronology suggests that the Morin terrane experienced granulite-facies metamorphism during the accretionary Shawinigan orogeny (1.19–1.14 Ga) and again during the Ottawan. Seven zircon samples from the 1.15 Ga Morin anorthosite suite were dated to confirm earlier age determinations, and Ottawan metamorphic rims (1.08–1.07 Ga) were observed in two samples. U-Pb dating of titanite in nine marble samples surrounding the Morin anorthosite suite yielded mixed ages spanning between the Shawinigan and Ottawan metamorphisms (n=7), and predominantly Ottawan ages (n=2). Our results show that Ottawan zircon growth and resetting of titanite ages is spatially heterogeneous in the Morin terrane. Ages with a predominantly Ottawan signature are recognized in the Morin shear zone, which deforms the eastern lobe of the anorthosite, in an overprinted skarn zone on the western side of the massif, and in the Labelle shear zone that marks its western boundary. In the rest of the Morin terrane titanite with Shawinigan ages appear to have been only partially reset during the Ottawan. Further work is needed to better understand the relationship between the character of Ottawan metamorphism and resetting in different parts of the Morin terrane.



Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 252
Author(s):  
George W. Robinson ◽  
Jeffrey R. Chiarenzelli ◽  
Marian V. Lupulescu

The southern Grenville Province is famous for both the large number of mineral localities and the diversity of the mineral species found [...]



Geosphere ◽  
2020 ◽  
Vol 16 (3) ◽  
pp. 844-874
Author(s):  
Graham B. Baird

Abstract Crustal-scale shear zones can be highly important but complicated orogenic structures, therefore they must be studied in detail along their entire length. The Carthage-Colton mylonite zone (CCMZ) is one such shear zone in the northwestern Adirondacks of northern New York State (USA), part of the Mesoproterozoic Grenville province. The southern CCMZ is contained within the Diana Complex, and geochemistry and U-Pb zircon geochronology demonstrate that the Diana Complex is expansive and collectively crystallized at 1164.3 ± 6.2 Ma. Major ductile structures within the CCMZ and Diana Complex include a northwest-dipping penetrative regional mylonitic foliation with north-trending lineation that bisects a conjugate set of mesoscale ductile shear zones. These ductile structures formed from the same 1060–1050 Ma pure shear transitioning to a top-to-the-SSE shearing event at ∼700 °C. Other important structures include a ductile fault and breccia zones. The ductile fault formed immediately following the major ductile structures, while the breccia zones may have formed at ca. 945 Ma in greenschist facies conditions. Two models can explain the studied structures and other regional observations. Model 1 postulates that the CCMZ is an Ottawan orogeny (1090–1035 Ma) thrust, which was later reactivated locally as a tectonic collapse structure. Model 2, the preferred model, postulates that the CCMZ initially formed as a subhorizontal mid-crustal mylonite zone during collapse of the Ottawan orogen. With continued collapse, a metamorphic core complex formed and the CCMZ was rotated into is current orientation and overprinted with other structures.



1995 ◽  
Vol 32 (9) ◽  
pp. 1292-1302
Author(s):  
Terence M. Gordon ◽  
Donald C. Lawton

The Daly Bay Complex is one of several metamorphic complexes making up the Aqxarneq gneisses north of Chesterfield Inlet in central District of Keewatin. Granulite-facies metamorphism (0.55 GPa, 750 °C) and ductile deformation have affected all of the rocks in the complex. A 1–15 km wide, inward-dipping, ductile shear zone forms the outer part of the complex and contains strongly deformed equivalents of rocks in the core. Mesoscopic structures and metamorphic mineralogy suggest the Daly Bay Complex was emplaced into the surrounding lower grade rocks by northward-directed thrusting. A three-dimensional gravity model, constrained by structural observations and 1091 surface density measurements, shows that the relatively dense rocks of the complex form a spoon-shaped structure with a long axis trending northwest–southeast. It is approximately 50 km by 120 km in lateral extent and reaches a maximum depth of about 9 km. The thin-skinned geometry of the Daly Bay Complex supports the notion that the crust in central Keewatin between the Daly Bay Complex and Baker Lake comprises a series of undulating imbricated gneiss sheets of middle and lower crustal material, which were juxtaposed by a major tectonic event sometime between 2.5 and 1.9 Ga. The interpreted basal décollement is comparable to seismic features in many orogens, and a predictable consequence of increased ductility with depth in the crust.



Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4901
Author(s):  
Miguel Muñiz-Calvente ◽  
Alfonso Fernández-Canteli

When designing structural and mechanical components, general structural integrity criteria must be met in order to ensure a valid performance according to its designed function, that is, supporting loads or resisting any kind of action causing stress and strains to the material without catastrophic failure. For these reasons, the development of solutions to manage the test conditions, failure mechanism, damage evolution, component functionalities and loading types should be implemented. The aim of this Special Issue “Probabilistic Mechanical Fatigue and Fracture of Materials” is to contribute to updating current and future state-of-the-art methodologies that promote an objective material characterization and the development of advanced damage models that ensure a feasible transferability from the experimental results to the design of real components. This is imbricated in some probabilistic background related to theoretical and applied fracture and fatigue theories, and advanced numerical models applied to some real application examples.



Sign in / Sign up

Export Citation Format

Share Document