Dispersal and retention of larval fish in a potential nursery habitat of a large temperate river: an experimental study

2012 ◽  
Vol 69 (8) ◽  
pp. 1302-1315 ◽  
Author(s):  
Elisabeth Schludermann ◽  
Michael Tritthart ◽  
Paul Humphries ◽  
Hubert Keckeis

Little information is available on governing factors of larval fish dispersal in natural river systems. Therefore, we aimed to describe dispersal and retention of marked larval nase carp, Chondrostoma nasus , along a shoreline nursery habitat of the River Danube. Based on a three-dimensional hydrodynamic model, we analyzed the influence of the hydraulic conditions on larval dispersal. We also related observed larval pathways to numerical particle tracing. Clear differences in the temporal drift pattern were due to significant differences in the hydrodynamic characteristics of the release stations. Some larvae remained in the study reach, most upstream of the release point. These were significantly larger than drifting larvae. We conclude that larval dispersal has an active component and that dispersal and retention patterns are dependent on the habitat structure and hydrodynamic characteristics of the releasing points. This emphasizes the importance of links between the location of spawning sites within the river and variation in flow during early development, the combination of which may contribute to successful recruitment of fluvial fish species.

2017 ◽  
Vol 74 (9) ◽  
pp. 1474-1489 ◽  
Author(s):  
Martin Glas ◽  
Michael Tritthart ◽  
Bernhard Zens ◽  
Hubert Keckeis ◽  
Aaron Lechner ◽  
...  

Recruitment of Chondrostoma nasus and similar fish species in rivers is related to spatiotemporal linkages between larval hatching and nursery habitats. Active swimming behaviour contradicts the assumption that passive particle tracing models can serve as a proxy for larval dispersal models. A racetrack flume with an inshore area of near-natural slope was created to observe individual larval trajectories. A new three-step, raster-based analysis was developed to distinguish four types of movement patterns: active upstream, active downstream, active–passive, and passive. Both larval developmental stage-specific and release site-specific occurrences of these movement patterns were experimentally found for nine flow velocity classes (≤0.225 m·s−1). These current-induced movement patterns, and evaluated durations within them, were used to develop a biased and correlated random walk model that includes rheoreaction — a key behavioural response of fish to flow within rivers. The study introduces the concept and application of a rheoreaction-based correlated random walk model, which coupled with a 3D hydrodynamic model, allows prediction of the spatiotemporal effects of various river discharges, morphologies, and restoration scenarios on larval fish dispersal.


2016 ◽  
Vol 13 (116) ◽  
pp. 20160068 ◽  
Author(s):  
Gen Li ◽  
Ulrike K. Müller ◽  
Johan L. van Leeuwen ◽  
Hao Liu

Larvae of bony fish swim in the intermediate Reynolds number ( Re ) regime, using body- and caudal-fin undulation to propel themselves. They share a median fin fold that transforms into separate median fins as they grow into juveniles. The fin fold was suggested to be an adaption for locomotion in the intermediate Reynolds regime, but its fluid-dynamic role is still enigmatic. Using three-dimensional fluid-dynamic computations, we quantified the swimming trajectory from body-shape changes during cyclic swimming of larval fish. We predicted unsteady vortices around the upper and lower edges of the fin fold, and identified similar vortices around real larvae with particle image velocimetry. We show that thrust contributions on the body peak adjacent to the upper and lower edges of the fin fold where large left–right pressure differences occur in concert with the periodical generation and shedding of edge vortices. The fin fold enhances effective flow separation and drag-based thrust. Along the body, net thrust is generated in multiple zones posterior to the centre of mass. Counterfactual simulations exploring the effect of having a fin fold across a range of Reynolds numbers show that the fin fold helps larvae achieve high swimming speeds, yet requires high power. We conclude that propulsion in larval fish partly relies on unsteady high-intensity vortices along the upper and lower edges of the fin fold, providing a functional explanation for the omnipresence of the fin fold in bony-fish larvae.


2017 ◽  
Vol 284 (1852) ◽  
pp. 20170359 ◽  
Author(s):  
Arjun Nair ◽  
Christy Nguyen ◽  
Matthew J. McHenry

An escape response is a rapid manoeuvre used by prey to evade predators. Performing this manoeuvre at greater speed, in a favourable direction, or from a longer distance have been hypothesized to enhance the survival of prey, but these ideas are difficult to test experimentally. We examined how prey survival depends on escape kinematics through a novel combination of experimentation and mathematical modelling. This approach focused on zebrafish ( Danio rerio ) larvae under predation by adults and juveniles of the same species. High-speed three-dimensional kinematics were used to track the body position of prey and predator and to determine the probability of behavioural actions by both fish. These measurements provided the basis for an agent-based probabilistic model that simulated the trajectories of the animals. Predictions of survivorship by this model were found by Monte Carlo simulations to agree with our observations and we examined how these predictions varied by changing individual model parameters. Contrary to expectation, we found that survival may not be improved by increasing the speed or altering the direction of the escape. Rather, zebrafish larvae operate with sufficiently high locomotor performance due to the relatively slow approach and limited range of suction feeding by fish predators. We did find that survival was enhanced when prey responded from a greater distance. This is an ability that depends on the capacity of the visual and lateral line systems to detect a looming threat. Therefore, performance in sensing, and not locomotion, is decisive for improving the survival of larval fish prey. These results offer a framework for understanding the evolution of predator–prey strategy that may inform prey survival in a broad diversity of animals.


2013 ◽  
Vol 727 ◽  
pp. 236-255 ◽  
Author(s):  
D. Vigolo ◽  
I. M. Griffiths ◽  
S. Radl ◽  
H. A. Stone

AbstractUnderstanding the behaviour of particles entrained in a fluid flow upon changes in flow direction is crucial in problems where particle inertia is important, such as the erosion process in pipe bends. We present results on the impact of particles in a T-shaped channel in the laminar–turbulent transitional regime. The impacting event for a given system is described in terms of the Reynolds number and the particle Stokes number. Experimental results for the impact are compared with the trajectories predicted by theoretical particle-tracing models for a range of configurations to determine the role of the viscous boundary layer in retarding the particles and reducing the rate of collision with the substrate. In particular, a two-dimensional model based on a stagnation-point flow is used together with three-dimensional numerical simulations. We show how the simple two-dimensional model provides a tractable way of understanding the general collision behaviour, while more advanced three-dimensional simulations can be helpful in understanding the details of the flow.


2018 ◽  
Vol 75 (2) ◽  
pp. 247-259 ◽  
Author(s):  
Aaron Lechner ◽  
Hubert Keckeis ◽  
Martin Glas ◽  
Michael Tritthart ◽  
Helmut Habersack ◽  
...  

We investigated the mode (active versus passive) of larval downstream dispersal and its influencing factors in the nase carp (Chondrostoma nasus). Marked larvae (early and later stages), together with equivalent numbers of passive particles, were released in the main channel of the River Danube (Austria) at different flow (low, high) and current (over-critical, under-critical) conditions. Larvae and particles were recaptured with stationary nets at varying distances from release. We assumed that differences in the spatial dispersal patterns between larvae and particles were due to fish activity. We hypothesized that river discharge, developmental stage, current speed, and distance from release would influence these differences. We found that activity was independent of developmental stage or current speed at release, although activity was higher during low flow conditions. It may be that larvae deliberately enter the current during low flow, because the hydraulic conditions facilitate active dispersal. Furthermore, activity was greatest near the release site. This might be due to an intrinsically greater activity when fish are placed into novel surroundings or a result of rheoreaction. The discharge-dependent dispersal patterns observed represent an important ecological link between flow and recruitment and demonstrate the importance of inshore conditions for the early life stages of fish in large rivers, especially with regard to river modification and restoration schemes.


2014 ◽  
Vol 721 ◽  
pp. 199-202
Author(s):  
Zhen Xiao Bi ◽  
Zhi Han Zhu

This paper presents the calculation of hydrodynamic characteristics of two side-by-side cylinders of different diameters in three dimensional incompressible uniform cross flow by using Large-eddy simulation method based on dynamical Smagorinsky-Lilly sub-grid scale model. Solution of the three dimensional N-S equations were obtained by the finite volume method. The numerical simulation focused on investigating the characteristic of the pressure distribution (drag and lift force), vorticity field and turbulence Re=. Results shows that, the asymmetry of the time –averaged velocity distribution in the flow direction behind the two cylinders is very obvious; the frequency of eddy shedding of the small cylinder is about twice of the large one. The turbulence of cylinders is more obvious.


Author(s):  
Roberta Ferri ◽  
Fulvio Mascari ◽  
Paride Meloni ◽  
Giuseppe Vella

Code validation on qualified experimental data is a fundamental issue in the design and safety analyses of nuclear power plants. The SPES3 facility is being built at the SIET laboratories for an integral type SMR simulation, in the frame of an R&D program on nuclear fission, funded by the Italian Ministry of Economic Development and led by ENEA. The facility, based on the IRIS reactor design, reproduces the primary, secondary and containment systems with 1:100 volume scale, full elevation and prototypical fluid and thermal-hydraulic conditions. It is suitable to test the plant response to design and beyond design accidents in order to verify the effectiveness of the primary and containment system dynamic coupling to cope with loss of coolant accidents. Full and complete nodalizations of SPES3 were developed for TRACE and RELAP5 codes in order to investigate the code response to the simulation of the same accidental transient. The DVI line DEG break was simulated in beyond design conditions, assuming the failure of all emergency heat removal systems and relying on PCC intervention for containment depressurization and decay heat removal. The comparison of the code simulation results, other than providing information on the system behavior, allowed to investigate specific phenomena evidenced by the codes, according to the related modeling approach of components with one and three-dimensional volumes. The TRACE and RELAP5 codes will be applied for further transient analyses and will be validated on SPES3 experimental data, once the facility will be available.


2007 ◽  
Vol 129 (3) ◽  
pp. 603-610 ◽  
Author(s):  
Gunther Brenner ◽  
Ahmad Al-Zoubi ◽  
Merim Mukinovic ◽  
Hubert Schwarze ◽  
Stefan Swoboda

The effect of surface texture and roughness on shear and pressure forces in tribological applications in the lubrication regime is analyzed by means of lattice-Boltzmann simulations that take the geometry of real surface elements into account. Topographic data on representative surface structures are obtained with high spatial resolution with the application of an optical interference technique. The three-dimensional velocity field past these surfaces is computed for laminar flow of Newtonian fluids in the continuum regime. Subsequently, pressure and shear flow factors are obtained by evaluating the velocity field in accordance with the extended Reynolds equation of Patir and Cheng (1978, ASME J. Tribol., 100, pp. 12–17). The approach allows an efficient determination of the hydrodynamic characteristics of microstructured surfaces in lubrication. Especially, the influence of anisotropy of surface texture on the hydrodynamic load capacity and friction is determined. The numerical method used in the present work is verified for a simplified model configuration, the flow past a channel with sinusoidal walls. The results obtained indicate that full numerical simulations should be used to accurately and efficiently compute the characteristic properties of film flows past rough surfaces and may therefore contribute to a better understanding and prediction of tribological problems.


2013 ◽  
Vol 726-731 ◽  
pp. 3212-3221 ◽  
Author(s):  
Wei Ping Yin ◽  
Dao Bin Ji ◽  
Nian San Hu ◽  
Tao Xie ◽  
Yu Ling Huang ◽  
...  

When the impoundment of the Three Gorges Reservoir begins, the water level rises, and the water flow rate slows down, thus the residence time of bay and tributary pollutant extends, and the water environment changes significantly, resulting in different degrees of cyanobacteria outbreak in each spring. Numerous studies show that nutrient concentrations in mainstream is relatively higher than in tributary, so stratified density current of mainstreams and tributaries has played a key role on Bay eutrophication. In order to investigate the exchange process of mainstreams and tributaries, set boundary conditions according to the observed data, and then simulate Xiangxi estuary three-dimensional hydrodynamic characteristics by using Flow-3D software, which can simulate it well. The model theoretically confirms that the intrusion density current phenomenon does exist in typical tributaries, and the simulation results show that near the estuary region, there is a big diversity in the temperature field and the flow field along the transverse distribution, but when the estuary distance increases, the flow field in the cross section, except for a small area near the riverbank, tends to be in a mean state along the transverse distribution.


Sign in / Sign up

Export Citation Format

Share Document