Physical and Chemical Characteristics of Ogac Lake, a Landlocked Fiord on Baffin Island

1967 ◽  
Vol 24 (5) ◽  
pp. 981-1015 ◽  
Author(s):  
Ian A. McLaren

Ogac Lake is the small (148 ha) landlocked head of a fiord with three distinct basins. It receives highest spring tides (maximal range 12 m, as high as 1.2 m above lake level) monthly during the open-water season through a narrow entrance. The predictable inflows displaced about one-quarter of the lake's volume in 1957. The lake is meromictic, fresh at the surface and 28‰ salinity at depth. Some 55 kg/m2 salt lost in surface outflow in summer was more than restored by the tides by the end of 1957. Deep salinities did not change between 1951 and 1962. Vertical attenuation of light is adequately accounted for by chlorophyll alone. The lake is much warmer than the nearby sea. Temperature inversions are caused by cold tidal water and perpetuated by vertical stability. The gross annual heat budget in 1957 was 22,000 cal/cm2, about the same as in the nearby sea, but higher than in a freshwater lake. Heating from below a few meters to 30 m can be accounted for by radiation alone. About 20% of radiation reaching the bottom subsequently appeared as heat in the water immediately overlying the bottom, thus implying restricted horizontal transfer. Oxygen was absent below 25–32.5 m, which may approximate the compensation level in this and similar lakes. Oxygen differences between basins are partly controlled by morphometry. Distinct oxygen minima in 1957 were associated with temperature minima and caused by concentrations of zooplankton. Vertical distribution of pH parallels that of oxygen. Specific alkalinities seem slightly higher than in normal seawater. Phosphate showed a distinct and stable minimum just above the anoxic layer and was as high as 14.3 μg-at/liter within that layer. Nitrate was relatively low and maximal just above the anoxic layer. Although nutrient levels seemed partly related to morphometry in the three basins, no evidence of nutrient enrichment of bottom water was found in late summer. The tides contribute negligible nutrients to the lake. The character of Ogac Lake compared with similar lakes derives from the great tidal amplitude and narrow connection with the sea, as well as from its small size and sheltered setting.

Author(s):  
Ole Bennike ◽  
Anker Weidick

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Bennike, O., & Weidick, A. (1999). Observations on the Quaternary geology around Nioghalvfjerdsfjorden, eastern North Greenland. Geology of Greenland Survey Bulletin, 183, 56-60. https://doi.org/10.34194/ggub.v183.5205 _______________ In North and North-East Greenland, several of the outlet glaciers from the Inland Ice have long, floating tongues (Higgins 1991). Nioghalvfjerdsfjorden (Fig. 1) is today occupied by a floating outlet glacier that is about 60 km long, and the fjord is surrounded by dissected plateaux with broad valleys (Thomsen et al. 1997). The offshore shelf to the east of Nioghalvfjerdsfjorden is unusually broad, up to 300 km wide (Cherkis & Vogt 1994), and recently small low islands were discovered on the western part of this shelf (G. Budeus and T.I.H. Andersson, personal communications 1998). Quaternary deposits are widespread around Nioghalvfjerdsfjorden and include glacial, glaciofluvial, marine, deltaic and ice lake deposits. Ice margin features such as kame deposits and moraines are also common (Davies 1972). The glaciation limit increases from 200 m a.s.l. over the eastern coastal islands to 1000 m in the inland areas; local ice caps and valley glaciers are common in the region, although the mean annual precipitation is only about 200 mm per year. Most of the sea in the area is covered by permanent sea ice, with pack ice further east, but open water is present in late summer in some fjords north of Nioghalvfjerdsfjorden, and in the Nordøstvandet polynia.


1999 ◽  
Vol 50 (2) ◽  
pp. 159 ◽  
Author(s):  
D. Walker

Lakes Barrine and Eacham, ~1.0 and 0.5 km2 area, 67 and 63 m depth respectively, lie at ~740 m a.s.l., ~17°S in north-eastern Australia. Seasonal changes in their volumes modelled from meteorological data correspond well with observations at Eacham. Temperature profiles through 6 years show summer stratification with a metalimnion at 20–30 m; in winter, near isothermy is usually attained. At Barrine, thermal stability varies between winter and summer (<500 and >4000 g-cm cm-2 respectively). Mixing is related to low ground temperatures during periods of generally low thermal stability; exceptionally it penetrates to >60 m. Oxygen saturation decreases from the surface to ~20% at the base of the euphotic zone (15–21 m) but oxygen is carried lower by mixing after which anoxia commonly rises to ~40 m. At Barrine, Fe-reducing redox (<200 mV) usually occurs below 50 m, but during mixing this boundary falls to within 1 m of the mud–water interface. The Barrine solution is dilute (total dissolved solids 55–58 mg L-1), and that of Eacham is more so. A concentrated monimolimnion has developed in the lowermost 2–3 m at Barrine but not at Eacham. Sedimentation at the middle of each lake results from the continuous deposition of open-water products punctuated by the redistribution of coarser detritus from the ‘shallows’ at times of deep mixing. The resultant laminations are preserved only at Barrine, protected by the chemical stability of the monimolimnion.


2018 ◽  
Vol 29 ◽  
pp. 27-39
Author(s):  
István Gyulai ◽  
Csilla Lakatos ◽  
János Tamás Kundrát ◽  
Zsuzsanna Balogh ◽  
Edina Simon ◽  
...  

We assessed the usefulness of Cladocera remains for establishing the ecological status of oxbows and also tested the association of Cladocera species with various vegetation types. Cladocera remains were collected from the surface sediment of four habitat types (tangled vegetation, open water, reeds and tunnels) and 15 physical and chemical parameters of surface water were studied. In the surface sediment samples, we identified 32 Cladocera taxa. There was a significant difference in the number of species amongst habitat types as per ANOVA. The benthic and plant associated Cladocera communities of reeds, tangled vegetation, open water and tunnels were clearly separated from each other by NMDS ordination. CCA showed that habitat types had characteristic Cladocera species: Pleuroxus species were frequent in the tangled vegetation habitat, while Chydorus species were frequent in the open water. Remarkably, in reeds, Bosmina species were frequent, although these species are usually common in open water. Specimens of the Alona genus were found everywhere. Our findings suggest that the remains of Cladocera species may be useful indicators to assess and monitor the structure of freshwater lakes.


Author(s):  
Donald A. Thomson ◽  
Matthew R. Gilligan

Marine systems have provided little empirical or theoretical support for the equilibrium theory of island biogeography introduced by MacArthur and Wilson (1967; hereafter referred to as MacArthur-Wilson equilibria). In particular, although marine islands represent isolated habitats for shoreline-restricted marine organisms, it is clear that they do not have impoverished biotas relative to adjacent mainland shores as do their terrestrial counterparts. Additionally, it is not clear that colonization rates based on distance from propagule sources, and extinction rates based on island size, play a substantial role in determining the number and kind of species that may exist here. In this chapter we ask whether the gulf islands are biogeographic islands to rockyshore fishes as they are to terrestrial plants and animals. Although the adults and juveniles of most marine shore fishes cannot readily cross the deep waters separating landmasses, most marine fishes have pelagic eggs and larvae which are often found great distances from shore (Leis and Miller 1976; Leis 1991). Certain families of teleostean fishes (e.g., the blennioids and gobioids) have demersal eggs that are attached to a substrate, and only the larvae are dispersed by ocean currents. Some of these fishes have short-lived larvae that are normally found only close to shore (Brogan 1994). Considering such different types of dispersal mechanisms, one must conclude that distance over open water must be as formidable a barrier to dispersal in some fishes as it is to terrestrial organisms. In line with this conclusion, shore-fish faunas of oceanic islands show high degrees of endemism—for example, 23% in Galapagos shore fishes (Walker 1966), 23.1% and 22.2% in Hawaiian and Easter Island fishes, respectively (Randall 1998). It is well known that the marine insular environment differs considerably from the mainland or continental environment (Robins 1971). Essentially, the former is characterized by a more stable, predictable physical regime with moderate fluctuations in physical factors such as sea temperature, salinity, and turbidity, whereas the latter usually has wider and more unpredictable fluctuations in physical parameters. Robins (1971) compared the difference in species richness between insular and continental fish faunas of the tropical western Atlantic to that between a tropical and a temperate forest, respectively.


2001 ◽  
Vol 33 ◽  
pp. 171-176 ◽  
Author(s):  
Donald K. Perovich ◽  
Jacqueline A. Richter-Menge ◽  
Walter B. Tucker

AbstractThe morphology of the Arctic sea-ice cover undergoes large changes over an annual cycle. These changes have a significant impact on the heat budget of the ice cover, primarily by affecting the distribution of the solar radiation absorbed in the ice-ocean system. In spring, the ice is snow-covered and ridges are the prominent features. The pack consists of large angular floes, with a small amount of open water contained primarily in linear leads. By the end of summer the ice cover has undergone a major transformation. The snow cover is gone, many of the ridges have been reduced to hummocks and the ice surface is mottled with melt ponds. One surface characteristic that changes little during the summer is the appearance of the bare ice, which remains white despite significant melting. The large floes have broken into a mosaic of smaller, rounded floes surrounded by a lace of open water. Interestingly, this break-up occurs during summer when the dynamic forcing and the internal ice stress are small During the Surface Heat Budget of the Arctic Ocean (SHEBA) field experiment we had an opportunity to observe the break-up process both on a small scale from the ice surface, and on a larger scale via aerial photographs. Floe break-up resulted in large part from thermal deterioration of the ice. The large floes of spring are riddled with cracks and leads that formed and froze during fall, winter and spring. These features melt open during summer, weakening the ice so that modest dynamic forcing can break apart the large floes into many fragments. Associated with this break-up is an increase in the number of floes, a decrease in the size of floes, an increase in floe perimeter and an increase in the area of open water.


ARCTIC ◽  
1965 ◽  
Vol 18 (3) ◽  
pp. 189 ◽  
Author(s):  
James A. Peterson

Reports field work on ice-push ramparts in the Whitegull Lake area of Quebec Province (55 30 N, 64 15 W). Modes of formation of ramparts during the partial open water season are reviewed and examples illus. Raised shorelines described by Low (No 10377) are re-interpreted as possible ice-push ramparts. Comparison of the Labrador Peninsula lakes with proglacial lakes in Baffin Island may assist interpretation of these features.


Polar Record ◽  
2008 ◽  
Vol 44 (1) ◽  
pp. 51-76 ◽  
Author(s):  
Gita J. Laidler ◽  
Pootoogoo Elee

ABSTRACTSea ice has been, and continues to be, an integral component of life in the Inuit community of Cape Dorset, Nunavut. Located on an island of the same name off the southwestern coast of Baffin Island, the strong Hudson Strait currents prevent extensive ice formation around the community. Nevertheless, sea ice remains an important travel and hunting platform, enabling access to Baffin Island, hunting and fishing grounds, and nearby communities. With the combined importance, dynamism, and continuous use of this frozen ocean environment, local Inuit elders and hunters have developed a detailed and nuanced understanding of sea ice conditions, freeze/thaw processes, and the influences of winds and currents on ice conditions. Working collaboratively with the community of Cape Dorset since October, 2003, we present the results of 30 semi-directed interviews, 5 sea ice trips, and 2 focus groups to provide a baseline understanding of local freezing processes (near-shore, open water, sea ice thickening, landfast ice, floe edge, and tidal cracks), melting processes (snow melt, water accumulation and drainage, break-up, and cracks/leads), wind influences on sea ice (wind direction and strength affecting sea ice formation, and movement), and current influences on sea ice (tidal variations and current strength affecting sea ice formation, movement, and polynya size/location). Strong emphasis is placed on Inuktitut terminology and spatial delineations of localised ice conditions and features. Therefore, this paper provides insights into local scale ice conditions and dynamics around Cape Dorset that are not captured in regional scale studies of Hudson Bay and/or Hudson Strait. Results have the potential to inform future research efforts on local/regional sea ice monitoring, the relationship between Inuit knowledge, language, and the environment, and addressing community interests through targeted studies.


2008 ◽  
Vol 54 (184) ◽  
pp. 28-40 ◽  
Author(s):  
William Colgan ◽  
Martin Sharp

AbstractAn annual net accumulation history of the high-elevation region of Devon Ice Cap, Nunavut, Canada, was reconstructed for the period 1963–2003 using five shallow firn cores. Annual net accumulation decreased significantly after 1989. To explain variability in the reconstructed annual net accumulation record, monthly and seasonal moisture-source probabilities were calculated for gridcells throughout the Arctic during 1979–2003. Seasonally, moisture-source probabilities reach a maximum in northern Baffin Bay in late summer/early fall and approach zero throughout the Arctic in winter. Late-summer/early-fall moisture-source probabilities were significantly higher around the North Open Water (NOW) Polynya during the 4 year period of highest annual net accumulation during the 1979–2003 period (1984–87), than during the 4 year period with the lowest annual net accumulation (1994–97). This is due to both a significant decrease in the sea-ice fraction and a significant increase in low-elevation atmospheric transport over the NOW area during the high net accumulation period. Anomalously low net accumulation and anomalously high firnification rates during the 1989–2003 period suggest that a change in ice dynamics, rather than a change in surface mass balance, may explain recent ice-cap thickening observed by laser altimetry.


2020 ◽  
Vol 6 (2) ◽  
pp. 118-122
Author(s):  
Tamie Joy Jovanelly

Background and Aim: A population of endangered sitatunga antelope (Tragelaphus spekii) lives in a free-range environment at Impala Sanctuary in Kisumu, Kenya. Kenya Wildlife Service park officials suspected that increased demands on outdated sewage infrastructure caused animal drinking water sources to become contaminated which resulted in animal sickness and death. In this study, we complete a water quality assessment on open water sources within the park boundaries to determine if water was suitable for animal consumption. Materials and Methods: For the assessment of water, we measure eight physical and chemical parameters (pH, temperature, fecal coliform, dissolved oxygen, biochemical oxygen demand, nitrates, total phosphates, and turbidity). These eight parameters were chosen because they are used to establish a water quality index (WQI) percentage which proved to be useful to communicate conditions to park rangers, stakeholders, and adjacent landowners. Results: Through 6 months of assessments, data collection, and analysis, we determined that most open water sources are severely contaminated, ranking on the WQI from 46% to 58% (bad to medium). In addition, we compared our data to drinking water standards set by the U.S. Department of Agriculture for livestock to find that only two sites met the minimum criteria. The remaining four sites were exponentially contaminated with levels reaching 10× recommended values for animal health. Conclusion: Following these findings, the park was able to attract money for sewage infrastructure rebuilds that resolved the contamination problems. Sickness and death of free-roaming animals, including the antelope, were reduced.


Elem Sci Anth ◽  
2019 ◽  
Vol 7 ◽  
Author(s):  
Shawn G. Gallaher

To better understand the response of the western Arctic upper ocean to late summer ice-ocean interactions, a range of surface, interior, and basal sea ice conditions were simulated in a 1-D turbulent boundary layer model. In-ice and under-ice autonomous observations from the 2014 Marginal Ice Zone Experiment provided a complete characterization of the late melt-season sea ice and were used to set initial conditions, update boundary conditions, and conduct model validation studies. Results show that underestimates of open water and melt pond fraction at the sea ice surface had the largest influence on ocean-to-ice turbulent heat fluxes reducing basal melt rates by as much as 32%. This substantial reduction in latent heat loss was attributed to underestimates of open water areas and the exclusion of melt ponds by low-resolution synthetic aperture radar imagery. However, the greatest overall effect on the ice-ocean boundary layer came from mischaracterizations of basal roughness, with smooth ice scenarios resulting in 7 m of summer halocline shoaling and preservation of the near-surface temperature maximum. Rough ice conditions showed a 23% deepening of the mixed layer and erosion of heat storage above 40 m. Adjustments of conductive heat fluxes had little effect on the near-interface heat budget due to small internal thermal gradients within the late summer sea ice. Results from the 1-D boundary layer simulations highlight the most influential components of sea ice structure during late summer conditions and provide the magnitude of errors expected when ice conditions are mischaracterized.


Sign in / Sign up

Export Citation Format

Share Document