Role of gene duplication in evolution

Genome ◽  
1989 ◽  
Vol 31 (1) ◽  
pp. 304-310 ◽  
Author(s):  
Tomoko Ohta

It is now known that many multigene and supergene families exist in eukaryote genomes: multigene families with uniform copy members like genes for ribosomal RNA, those with variable members like immunoglobulin genes, and supergene families such as those for various growth factor and hormone receptors. Many such examples indicate that gene duplication and subsequent differentiation are extremely important for organismal evolution. In particular, gene duplication could well have been the primary mechanism for the evolution of complexity in higher organisms. Population genetic models for the origin of gene families with diverse functions are presented, in which natural selection favors those genomes with more useful mutants in duplicated genes. Since any gene has a certain probability of degenerating by mutation, success versus failure in acquiring a new gene by duplication may be expressed as the ratio of probabilities of spreading of useful versus detrimental mutations in redundant gene copies. Also examined are the effects of gene duplication on evolution by compensatory advantageous mutations. Results of the analyses show that both natural selection and random drift are important for the origin of gene families. In addition, interaction between molecular mechanisms such as unequal crossing-over and gene conversion, and selection or drift is found to have a large effect on evolution by gene duplication.Key words: gene duplication, gene family, evolution of new genes.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Xing Wang ◽  
Yi Zhang ◽  
Yufeng Zhang ◽  
Mingming Kang ◽  
Yuanbo Li ◽  
...  

AbstractEarthworms (Annelida: Crassiclitellata) are widely distributed around the world due to their ancient origination as well as adaptation and invasion after introduction into new habitats over the past few centuries. Herein, we report a 1.2 Gb complete genome assembly of the earthworm Amynthas corticis based on a strategy combining third-generation long-read sequencing and Hi-C mapping. A total of 29,256 protein-coding genes are annotated in this genome. Analysis of resequencing data indicates that this earthworm is a triploid species. Furthermore, gene family evolution analysis shows that comprehensive expansion of gene families in the Amynthas corticis genome has produced more defensive functions compared with other species in Annelida. Quantitative proteomic iTRAQ analysis shows that expression of 147 proteins changed in the body of Amynthas corticis and 16 S rDNA sequencing shows that abundance of 28 microorganisms changed in the gut of Amynthas corticis when the earthworm was incubated with pathogenic Escherichia coli O157:H7. Our genome assembly provides abundant and valuable resources for the earthworm research community, serving as a first step toward uncovering the mysteries of this species, and may provide molecular level indicators of its powerful defensive functions, adaptation to complex environments and invasion ability.



2019 ◽  
Author(s):  
Xing Wang ◽  
Yi Zhang ◽  
Yufeng Zhang ◽  
Mingming Kang ◽  
Yuanbo Li ◽  
...  

AbstractEarthworms (Annelida: Crassiclitellata), are widely distributed around the world due to their great adaptability. However, lack of a high-quality genome sequence prevents gaining the many insights into physiology, phylogeny, and genome evolution that could come from a good earthworm genome. Herein, we report a complete genome assembly of the earthworm Amynthas corticis of about 1.2 Gb, based on a strategy combining third-generation long-read sequencing and Hi-C mapping. A total of 29,256 protein-coding genes are annotated in this genome. Analysis of resequencing data indicates that this earthworm is a triploid species. Furthermore, gene family evolution analysis shows that comprehensive expansion of gene families in the earthworm genome has produced more defensive functions compared with other species in Annelida. Quantitative proteomic iTRAQ analysis shows 97 immune related proteins and 16S rDNA sequences shows 88 microbes with significantly response to pathogenic Escherichia coli O157:H7. Our genome assembly provides abundant and valuable resources for the earthworm research community, serving as a first step toward uncovering the mysteries of this species, may explain its powerful defensive functions adapt to complex environment and invasion from molecular level.



Genetics ◽  
1987 ◽  
Vol 115 (1) ◽  
pp. 207-213 ◽  
Author(s):  
Tomoko Ohta

ABSTRACT By considering the recent finding that unequal crossing over and other molecular interactions are contributing to the evolution of multigene families, a model of the origin of repetitive genes was studied by Monte Carlo simulations. Starting from a single gene copy, how genetic systems evolve was examined under unequal crossing over, random drift and natural selection. Both beneficial and deteriorating mutations were incorporated, and the latter were assumed to occur ten times more frequently than the former. Positive natural selection favors those chromosomes with more beneficial mutations in redundant copies than others in the population, but accumulation of deteriorating mutations (pseudogenes) have no effect on fitness so long as there remains a functional gene. The results imply the following: (1) Positive natural selection is needed in order to acquire gene families with new functions. Without it, too many pseudogenes accumulate before attaining a functional gene family. (2) There is a large fluctuation in the outcome even if parameters are the same. (3) When unequal crossing over occurs more frequently, the system evolves more rapidly. It was also shown, under realistic values of parameters, that the genetic load for acquiring a new gene is not as large as J. B. S. Haldane suggested, but not so small as in a model in which a system for selection started from already redundant genes.



Development ◽  
1994 ◽  
Vol 1994 (Supplement) ◽  
pp. 125-133 ◽  
Author(s):  
Peter W. H. Holland ◽  
Jordi Garcia-Fernàndez ◽  
Nic A. Williams ◽  
Arend Sidow

All vertebrates possess anatomical features not seen in their closest living relatives, the protochordates (tunicates and amphioxus). Some of these features depend on developmental processes or cellular behaviours that are again unique to vertebrates. We are interested in the genetic changes that may have permitted the origin of these innovations. Gene duplication, followed by functional divergence of new genes, may be one class of mutation that permits major evolutionary change. Here we examine the hypothesis that gene duplication events occurred close to the origin and early radiation of the vertebrates. Genome size comparisons are compatible with the occurrence of duplications close to vertebrate origins; more precise insight comes from cloning and phylogenetic analysis of gene families from amphioxus, tunicates and vertebrates. Comparisons of Hox gene clusters, other homeobox gene families, Wnt genes and insulin-related genes all indicate that there was a major phase of gene duplication close to vertebrate origins, after divergence from the amphioxus lineage; we suggest there was probably a second phase of duplication close to jawed vertebrate origins. From amphioxus and vertebrate homeobox gene expression patterns, we suggest that there are multiple routes by which new genes arising from gene duplication acquire new functions and permit the evolution of developmental innovations.



PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4140 ◽  
Author(s):  
Jing-E Ma ◽  
Lin-Miao Li ◽  
Hai-Ying Jiang ◽  
Xiu-Juan Zhang ◽  
Juan Li ◽  
...  

The Malayan pangolin (Manis javanica) is an unusual, scale-covered, toothless mammal that specializes in myrmecophagy. Due to their threatened status and continuing decline in the wild, concerted efforts have been made to conserve and rescue this species in captivity in China. Maintaining this species in captivity is a significant challenge, partly because little is known of the molecular mechanisms of its digestive system. Here, the first large-scale sequencing analyses of the salivary gland, liver and small intestine transcriptomes of an adult M. javanica genome were performed, and the results were compared with published liver transcriptome profiles for a pregnant M. javanica female. A total of 24,452 transcripts were obtained, among which 22,538 were annotated on the basis of seven databases. In addition, 3,373 new genes were predicted, of which 1,459 were annotated. Several pathways were found to be involved in myrmecophagy, including olfactory transduction, amino sugar and nucleotide sugar metabolism, lipid metabolism, and terpenoid and polyketide metabolism pathways. Many of the annotated transcripts were involved in digestive functions: 997 transcripts were related to sensory perception, 129 were related to digestive enzyme gene families, and 199 were related to molecular transporters. One transcript for an acidic mammalian chitinase was found in the annotated data, and this might be closely related to the unique digestive function of pangolins. These pathways and transcripts are involved in specialization processes related to myrmecophagy (a form of insectivory) and carbohydrate, protein and lipid digestive pathways, probably reflecting adaptations to myrmecophagy. Our study is the first to investigate the molecular mechanisms underlying myrmecophagy in M. javanica, and we hope that our results may play a role in the conservation of this species.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qian-Hao Zhu ◽  
Warwick Stiller ◽  
Philippe Moncuquet ◽  
Stuart Gordon ◽  
Yuman Yuan ◽  
...  

Abstract Fiber mutants are unique and valuable resources for understanding the genetic and molecular mechanisms controlling initiation and development of cotton fibers that are extremely elongated single epidermal cells protruding from the seed coat of cottonseeds. In this study, we reported a new fuzzless-tufted cotton mutant (Gossypium hirsutum) and showed that fuzzless-tufted near-isogenic lines (NILs) had similar agronomic traits and a higher ginning efficiency compared to their recurrent parents with normal fuzzy seeds. Genetic analysis revealed that the mutant phenotype is determined by a single incomplete dominant locus, designated N5. The mutation was fine mapped to an approximately 250-kb interval containing 33 annotated genes using a combination of bulked segregant sequencing, SNP chip genotyping, and fine mapping. Comparative transcriptomic analysis using 0–6 days post-anthesis (dpa) ovules from NILs segregating for the phenotypes of fuzzless-tufted (mutant) and normal fuzzy cottonseeds (wild-type) uncovered candidate genes responsible for the mutant phenotype. It also revealed that the flanking region of the N5 locus is enriched with differentially expressed genes (DEGs) between the mutant and wild-type. Several of those DEGs are members of the gene families with demonstrated roles in cell initiation and elongation, such as calcium-dependent protein kinase and expansin. The transcriptome landscape of the mutant was significantly reprogrammed in the 6 dpa ovules and, to a less extent, in the 0 dpa ovules, but not in the 2 and 4 dpa ovules. At both 0 and 6 dpa, the reprogrammed mutant transcriptome was mainly associated with cell wall modifications and transmembrane transportation, while transcription factor activity was significantly altered in the 6 dpa mutant ovules. These results imply a similar molecular basis for initiation of lint and fuzz fibers despite certain differences.



Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 300
Author(s):  
Camilla Ceccatelli Berti ◽  
Giulia di Punzio ◽  
Cristina Dallabona ◽  
Enrico Baruffini ◽  
Paola Goffrini ◽  
...  

The increasing application of next generation sequencing approaches to the analysis of human exome and whole genome data has enabled the identification of novel variants and new genes involved in mitochondrial diseases. The ability of surviving in the absence of oxidative phosphorylation (OXPHOS) and mitochondrial genome makes the yeast Saccharomyces cerevisiae an excellent model system for investigating the role of these new variants in mitochondrial-related conditions and dissecting the molecular mechanisms associated with these diseases. The aim of this review was to highlight the main advantages offered by this model for the study of mitochondrial diseases, from the validation and characterisation of novel mutations to the dissection of the role played by genes in mitochondrial functionality and the discovery of potential therapeutic molecules. The review also provides a summary of the main contributions to the understanding of mitochondrial diseases emerged from the study of this simple eukaryotic organism.



Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 666
Author(s):  
Li Du ◽  
Wei Chen ◽  
Zixin Cheng ◽  
Si Wu ◽  
Jian He ◽  
...  

Spermatogenesis is a complex and dynamic process which is precisely controlledby genetic and epigenetic factors. With the development of new technologies (e.g., single-cell RNA sequencing), increasingly more regulatory genes related to spermatogenesis have been identified. In this review, we address the roles and mechanisms of novel genes in regulating the normal and abnormal spermatogenesis. Specifically, we discussed the functions and signaling pathways of key new genes in mediating the proliferation, differentiation, and apoptosis of rodent and human spermatogonial stem cells (SSCs), as well as in controlling the meiosis of spermatocytes and other germ cells. Additionally, we summarized the gene regulation in the abnormal testicular microenvironment or the niche by Sertoli cells, peritubular myoid cells, and Leydig cells. Finally, we pointed out the future directions for investigating the molecular mechanisms underlying human spermatogenesis. This review could offer novel insights into genetic regulation in the normal and abnormal spermatogenesis, and it provides new molecular targets for gene therapy of male infertility.



2019 ◽  
Vol 55 (1) ◽  
pp. 100-112 ◽  
Author(s):  
Yuxin Hu ◽  
Weiyue Xing ◽  
Huiyin Song ◽  
Zhengyu Hu ◽  
Guoxiang Liu


Sign in / Sign up

Export Citation Format

Share Document