THE THERMAL DECOMPOSITION OF DIPHENYLACETIC ACID

1960 ◽  
Vol 38 (8) ◽  
pp. 1271-1276 ◽  
Author(s):  
Margaret H. Back ◽  
A. H. Sehon

The pyrolysis of diphenylacetic acid was investigated over the temperature range 515-636° C using the toluene-carrier technique. The main products of this system were similar to those formed in the thermal decomposition of phenylacetic acid. The rate constant for the reaction[Formula: see text]was calculated as k′ = 8 × 1012.exp(−52,000/RT) sec−1.The over-all decomposition reaction was found to be partly heterogeneous and, therefore, the activation energy for reaction [1] may be only tentatively identified with D[(C6H5CH)2—COOH].


1960 ◽  
Vol 38 (8) ◽  
pp. 1261-1270 ◽  
Author(s):  
Margaret H. Back ◽  
A. H. Sehon

The thermal decomposition of phenylacetic acid was investigated by the toluene-carrier technique over the temperature range 587 to 722 °C. The products of the pyrolysis were carbon dioxide, carbon monoxide, hydrogen, methane, dibenzyl, and phenylketene. From the kinetics of the decomposition it was concluded that the reaction[Formula: see text]was a homogeneous, first-order process and that the rate constant of this dissociation step was represented by the expression k = 8 × 1012.e−55,000/RT sec−1. The activation energy of this reaction may be identified with D(C6H5CH2—COOH). The possible reactions of carboxyl radicals are discussed.



1963 ◽  
Vol 41 (7) ◽  
pp. 1826-1831 ◽  
Author(s):  
F. W. Evans ◽  
A. H. Sehon

The thermal decomposition of peracetic acid in toluene, benzene, and p-xylene was studied over the temperature range 75–95°C. The main products of decomposition were found to be CH4, CO2, CH3COOH; small amounts of methanol, phenols, and polymeric compounds were also detected.The rate of the overall decomposition was first order with respect to peracetic acid, and the results could be explained by postulating the participation of the two simultaneous reactions:[Formula: see text] [Formula: see text]The rate constant of reaction (1) was independent of the solvent, whereas k2 was dependent on the solvent. The ratio k2/k1 was about 10.



Fibers ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 84
Author(s):  
Maria Mironova ◽  
Igor Makarov ◽  
Lyudmila Golova ◽  
Markel Vinogradov ◽  
Georgy Shandryuk ◽  
...  

Comparative studies of the structure and thermal behavior of cellulose and composite precursors with additives of silyl-substituted acetylene and alkoxysilanes were carried out. It is shown that the introduction of silicon-containing additives into the cellulose matrix influenced the thermal behavior of the composite fibers and the carbon yield after carbonization. Comparison of the activation energies of the thermal decomposition reaction renders it possible to determine the type of additive and its concentration, which reduces the energy necessary for pyrolysis. It is shown that the C/O ratio in the additive and the presence of the Si–C bond affected the activation energy and the temperature of the beginning and the end of the pyrolysis reaction.



2019 ◽  
Vol 956 ◽  
pp. 181-191
Author(s):  
Jian Lin Xu ◽  
Bing Xue Ma ◽  
Cheng Hu Kang ◽  
Cheng Cheng Xu ◽  
Zhou Chen ◽  
...  

The thermal decomposition kinetics of polybutylene terephthalate (PBT) and flame-retardant PBT (FR-PBT) were investigated by thermogravimetric analysis at various heating rates. The kinetic parameters were determined by using Kissinger, Flynn-Wall-Ozawa and Friedman methods. The y (α) and z (α) master plots were used to identify the thermal decomposition model. The results show that the rate of residual carbon of FR-PBT is higher than that of PBT and the maximum mass loss rate of FR-PBT is lower than that of PBT. The values of activation energy of PBT (208.71 kJ/mol) and FR-PBT (244.78 kJ/mol) calculated by Kissinger method were higher than those of PBT (PBT: 195.54 kJ/mol) and FR-PBT (FR-PBT: 196.00 kJ/mol) calculated by Flynn-Wall-Ozawa method and those of PBT and FR-PBT (PBT: 199.10 kJ/mol, FR-PBT: 206.03 kJ/mol) calculated by Friedman methods. There is a common thing that the values of activation energy of FR-PBT are higher than that of PBT in different methods. The thermal decomposition reaction models of the PBT and FR-PBT can be described by Avarami-Erofeyev model (A1).



Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 968 ◽  
Author(s):  
Abdenacer Benhammada ◽  
Djalal Trache ◽  
Mohamed Kesraoui ◽  
Salim Chelouche

In this study, carbon mesospheres (CMS) and iron oxide nanoparticles decorated on carbon mesospheres (Fe2O3-CMS) were effectively synthesized by a direct and simple hydrothermal approach. α-Fe2O3 nanoparticles have been successfully dispersed in situ on a CMS surface. The nanoparticles obtained have been characterized by employing different analytical techniques encompassing Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The produced carbon mesospheres, mostly spherical in shape, exhibited an average size of 334.5 nm, whereas that of Fe2O3 supported on CMS is at around 80 nm. The catalytic effect of the nanocatalyst on the thermal behavior of cellulose nitrate (NC) was investigated by utilizing differential scanning calorimetry (DSC). The determination of kinetic parameters has been carried out using four isoconversional kinetic methods based on DSC data obtained at various heating rates. It is demonstrated that Fe2O3-CMS have a minor influence on the decomposition temperature of NC, while a noticeable diminution of the activation energy is acquired. In contrast, pure CMS have a slight stabilizing effect with an increase of apparent activation energy. Furthermore, the decomposition reaction mechanism of NC is affected by the introduction of the nano-catalyst. Lastly, we can infer that Fe2O3-CMS may be securely employed as an effective catalyst for the thermal decomposition of NC.



1992 ◽  
Vol 47 (9) ◽  
pp. 1297-1299 ◽  
Author(s):  
G. S. Sodhi ◽  
J. Kaur

Thermogravimetric (TG) studies have been carried out for some bimetallic dithiocarbamate complexes of the type ZnML4 and NiM′L′4 [M = Co(II), Cu(II); M′ = Zn(II), Hg(II); L = N-methylcyclohexyldithiocarbamate; L′ = N-ethylcyclohexyldithiocarbamate]. From TG curves, the order, apparent activation energy and apparent activation entropy for the thermal decomposition reaction have been calculated. The thermal stabilities have been correlated with the structures of the complexes on the basis of hard and soft acid base (HSAB) theory.



1985 ◽  
Vol 63 (11) ◽  
pp. 2945-2948 ◽  
Author(s):  
J.-R. Cao ◽  
R. A. Back

The thermal decomposition of cyclobutane-1,2-dione has been studied in the gas phase at temperatures from 120 to 250 °C and pressures from 0.2 to 1.5 Torr. Products were C2H4 + 2CO, apparently formed in a simple unimolecular process. The first-order rate constant was strongly pressure dependent, and values of k∞ were obtained by extrapolation of plots of 1/k vs. 1/p to1/p = 0. Experiments in a packed reaction vessel showed that the reaction was enhanced by surface at the lower temperatures. Arrhenius parameters for k∞, corrected for surface reaction, were log A (s−1) = 15.07(±0.3) and E = 39.3(±2) kcal/mol. This activation energy seems too low for a biradical mechanism, and it is suggested that the decomposition is probably a concerted process. The vapor pressure of solid cyclobutane-1,2-dione was measured at temperatures from 22 to 62 °C and a heat of sublimation of 13.1 kcal/mol was estimated.



1970 ◽  
Vol 23 (4) ◽  
pp. 749 ◽  
Author(s):  
JJ Batten ◽  
DC Murdie

The activation energy has been determined in the temperature range 170-198�. If the sample was spread the activation energy was independent of the definition of the kinetic parameter substituted in the Arrhenius equation and was 63 kcal mole-1. In the case of the unspread samples the activation energies of the induction, acceleration, and maximum rates were 49, 43, and 62 kcal mole-1 respectively. The effect that sample geometry has on the activation energy is attributed to gaseous decomposition products influencing the reaction.



2006 ◽  
Vol 530-531 ◽  
pp. 506-512 ◽  
Author(s):  
Wilton Silva Lopes ◽  
Crislene Rodrigues da Silva Morais ◽  
A.G. de Souza

In this work the kinetics of the thermal decomposition of two ß-diketone lanthanide complexes of the general formula Ln(thd)3phen (where Ln = Nd+3 or Tm+3, thd = 2,2,6,6- tetramethyl-3,5-heptanodione and phen = 1,10-phenantroline) has been studied. The powders were characterized by several techniques. Thermal decomposition of the complexes was studied by non-isothermal thermogravimetry techniques. The kinetic model that best describes the process of the thermal decomposition of the complexes it was determined through the method proposed by Coats-Redfern. The average values the activation energy obtained were 136 and 114 kJ.mol-1 for the complexes Nd(thd)3phen and Tm(thd)3phen, respectively. The kinetic models that best described the thermal decomposition reaction the both complexes were R2. The model R2 indicating that the mechanism is controlled by phase-boundary reaction (cylindrical symmetry) and is defined by the function g(α) = 2[1-(1-a)1/2], indicating a mean reaction order. The values of activation energy suggests the following decreasing order of stability: Nd(thd)3phen > Tm(thd)3phen.



2006 ◽  
Vol 514-516 ◽  
pp. 73-77 ◽  
Author(s):  
Viorica Muşat ◽  
Paula M. Vilarinho ◽  
Regina da Conceição Corredeira Monteiro ◽  
Elvira Fortunato ◽  
E. Segal

The thermoreactivity of a zinc acetate non-alkoxide solution used for the preparation of ZnO-based thin films was investigated in the temperature range 20-600°C by TG-DTA, XRD and SEM data. We found that the formation in air of ZnO crystallites from the sol-gel precursor occurs above 150°C simultaneously with the decomposition of an intermediary compound, most probably carbonate hydroxide (sclarite and/or hydrozincite). At 200 °C, the crystalline structure is well defined in terms of ZnO hexagonal lattice parameters, although residual organic compounds and water were not yet fully removed and an amorphous phase coexists. A kinetic investigation on the thermal decomposition of sol-gel precursor from DTA data using Kissinger differential equation is also presented. Apparent activation energy values of about. 100 kJ mol-1 corresponding to the nonisothermal decomposition of solid precursors in the temperature range 170-250oC have been found.



Sign in / Sign up

Export Citation Format

Share Document