Effects of drought stress and severe pruning on the reaction zone induced by single inoculations with a bark beetle associated fungus (Ophiostoma ips) in the phloem of young Scots pines

1998 ◽  
Vol 28 (12) ◽  
pp. 1814-1824 ◽  
Author(s):  
Luc Croisé ◽  
Erwin Dreyer ◽  
François Lieutier

The objective of this study was to test the effect of water stress and pruning on the resistance of young Scots pines (Pinus sylvestris L.) to a bark beetle associated fungus. Six-year-old potted trees were either pruned (70% of needles removed) or subjected to several successive episodes of severe water stress, prior to inoculation of inner bark with the fungus Ophiostoma ips (Rumb.) Nannf., which is usually associated with the bark beetle Ips sexdentatus Boern. Well-watered, nonpruned trees served as controls. Predawn needle water potential reached -2.5 MPa and net CO2 assimilation rates were reduced to almost zero during each water stress episode. The length of the reaction zones around inoculation points reached 3-4 cm after 3 weeks. It was higher during Spring than during Autumn. Impact of water stress on the length of the reaction zone was very limited and independent of the number of drought episodes that had been imposed prior to inoculation. The only visible change was a slight decrease when the inoculation was done during the period of maximum water stress intensity. Growth of the pathogen in the phloem was not affected by water stress. Correspondingly, pruning had no effect on either of these two parameters. Induced reaction zones accumulated monophenolic compounds that were undetectable in unwounded phloem. These included pinocembrin and pinosylvin and its monomethylether known to contribute to the defence against the fungus. Neither drought nor severe pruning induced any change in the nature or concentrations of these compounds in the unwounded phloem or in the reaction zone.

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 562
Author(s):  
Karen Campos ◽  
Andrés R. Schwember ◽  
Daniel Machado ◽  
Mónica Ozores-Hampton ◽  
Pilar M. Gil

Common bean is an important crop, consumed as green-shelled bean in several countries. In Chile, green-shelled beans are cultivated often as a dry land crop, vulnerable to drought. The objective of this study was to characterize the hydric and productive responses of four green-shelled bean genotypes subjected to deficit irrigation in order to outline production strategies in the face of increasing water scarcity. Two experiments were evaluated: one pot experiment with three irrigation treatments, supplying 100% of the crop evapotranspiration (ETc) (T100), 50% (T50), and 30% (T30); and an open field experiment with two treatments: 100% (I100) and 40% of ETc (I40). Treatments were applied during reproductive stage in determinate cultivars and vegetative stage in indeterminate plants. Severe water restriction (T30 and I40) in both experiments showed a significant decrease in stomatal conductances, as well as biomass and number of grains per pod; I40 treatment also showed a reduction in chlorophyll fluorescence. Water use efficiency (WUE) was higher under water stress in field (I40), but lower on the T30 treatment from the pot experiment. Determinate cultivars showed 22.7% higher of 100-seed weight compared to indeterminate type, and, thus, higher tolerance to drought. Our results indicate that severe water stress is highly harmful in terms of yield, and a moderate controlled deficit irrigation plus the use of determinate genotypes may be a strategy for producing green-shelled bean successfully under a drought scenario.


1999 ◽  
Vol 54 (9-10) ◽  
pp. 830-833 ◽  
Author(s):  
Akira Wadano ◽  
Mitsuharu Azeta ◽  
Shin-ichi Itotani ◽  
Ai Kanda ◽  
Toshio Iwaki ◽  
...  

Grafting is an easy way to produce a new seedling, which can tolerate against various stresses. During the acclimation after grafting, however, the seedlings still suffer a severe water stress. It is well known that water stress produces active oxygen to oxidize ascorbic acid. The concentration of ascorbic acid in the leaves was analyzed by HPLC equipped with an electrochemical detector. The column used was SP-120-5-ODS-BP (DAISO, JAPAN) and elution was performed with 0.1 ᴍ phosphate buffer, pH 3.0. After grafting the seedlings were acclimated under a 6-hr light/dark regimen. The content of ascorbic acid increased gradually during 2 days compared with control. The ascorbate peroxidase showed about constant activity, so the increase of ascorbic acid may be due to its requirement to cure the grafting


1968 ◽  
Vol 48 (2) ◽  
pp. 129-137 ◽  
Author(s):  
A. R. Maurer ◽  
H. F. Fletcher ◽  
D. P. Ormrod

Pea plants growing in "weighing lysimeters" were subjected to five soil-water regimes to determine their response to varying conditions of soil water imposed at different stages of development. Plants subjected to a minimal water stress developed luxuriantly and continued to grow up to the harvest period. Pea yield and plant height were not reduced, but fresh weight and dry matter were less if irrigation was applied when soil water fell to 60% rather than 88% of that available. A severe water stress after blossom reduced pea yield, irrespective of soil-water conditions prior to blossom. Plants which had been given ample soil water before blossom wilted visibly when a severe stress was imposed in the post-blossom period, yet wilting did not occur in plants subjected to severe water stress both before and after blossom. Severe water stress prior to blossom did not cause a decrease in pea yield if ample soil moisture was made available after blossom.


2021 ◽  
Author(s):  
Pablo Berríos ◽  
Abdelmalek Temnani ◽  
Susana Zapata ◽  
Manuel Forcén ◽  
Sandra Martínez-Pedreño ◽  
...  

<p>Mandarin is one of the most important Citrus cultivated in Spain and the sustainability of the crop is subject to a constant pressure for water resources among the productive sectors and to a high climatic demand conditions and low rainfall (about 250 mm per year). The availability of irrigation water in the Murcia Region is generally close to 3,500 m<sup>3</sup> per ha and year, so it is only possible to satisfy 50 - 60% of the late mandarin ETc, which requires about 5,500 m<sup>3</sup> per ha. For this reason, it is necessary to provide tools to farmers in order to control the water applied in each phenological phase without promoting levels of severe water stress to the crop that negatively affect the sustainability of farms located in semi-arid conditions. Stem water potential (SWP) is a plant water status indicator very sensitive to water deficit, although its measurement is manual, discontinuous and on a small-scale.  In this way, indicators measured on a larger scale are necessary to achieve integrating the water status of the crop throughout the farm. Thus, the aim of this study was to determine the sensitivity to water deficit of different hyperspectral single bands (HSB) and their relationship with the midday SWP in mandarin trees submitted to severe water stress in different phenological phases. Four different irrigation treatments were assessed: i) a control (CTL), irrigated at 100% of the ETc throughout the growing season to satisfy plant water requirements and three water stress treatments that were irrigated at 60% of ETc throughout the season – corresponding to the real irrigation water availability – except  during: ii) the end of phase I and beginning of phase II (IS IIa), iii) the first half of phase II (IS IIb) and iv) phase III of fruit growth (IS III), which irrigation was withheld until values of -1.8 MPa of SWP or a water stress integral of 60 MPa day<sup>-1</sup>. When these threshold values were reached, the spectral reflectance values were measured between 350 and 2500 nm using a leaf level spectroradiometer to 20 mature and sunny leaves on 4 trees per treatment. Twenty-four HVI and HSB were calculated and a linear correlation was made between each of them with SWP, where the ρ940 and ρ1250 nm single bands reflectance presented r-Pearson values of -0.78** and -0.83***, respectively. Two linear regression curves fitting were made: SWP (MPa) = -11.05 ∙ ρ940 + 7.8014 (R<sup>2</sup> =0.61) and SWP (MPa) = -13.043 ∙ ρ1250 + 8.9757 (R<sup>2</sup> =0.69). These relationships were obtained with three different fruit diameters (35, 50 and 65 mm) and in a range between -0.7 and -1.6 MPa of SWP. Results obtained show the possibility of using these single bands in the detection of water stress in adult mandarin trees, and thus propose a sustainable and efficient irrigation scheduling by means of unmanned aerial vehicles equipped with sensors to carry out an automated control of the plant water status and with a suitable temporal and spatial scale to apply precision irrigation.</p>


1988 ◽  
Vol 18 (4) ◽  
pp. 421-426 ◽  
Author(s):  
T. C. Hennessey ◽  
E. M. Lorenzi ◽  
R. W. McNew

An experiment to quantify the response of unnodulated, fertilized European black alder (Alnusglutinosa (L.) Gaertn.) seedlings to progressive water stress showed contrasting drought tolerance among five clones, using stomatal conductance, leaf area, and height as indices of drought sensitivity. In particular, one rapidly growing clone (AG 8022-14) showed the ability to moderate changes in water stress more efficiently than the more slowly growing clones. After 30 days of moderate levels of water stress, clones that had higher stomatal conductance also had greater leaf area and height growth. Leaf area and height were both sensitive to plant water status, although no threshold of stress associated with a cessation of leaf area or height expansion was found even though stomatal conductance decreased to 0.05 cm s−1 under severe water stress.


Author(s):  
Gonca Ece Özcan ◽  
Korhan Enez ◽  
Burak Arıcak

Forest roads are important transportation equipment through forested areas in the rugged, mountainous terrain of northern Turkey. Forest roads harm forest ecosystems due to both the manner in which they are established and how they are used afterwards. Damage to trees that occur during road construction through forests stresses trees, which facilitates outbreaks of bark beetle populations. Bark beetles are significant risk to the health and productivity of Turkish pine forests and to pine forests worldwide. In particular, Ips sexdentatus (Boerner) (Coleoptera, Curculionidae, Scolytinae) is a particularly destructive species of bark beetle in Turkish forests. Their damage to coniferous trees threatens the sustainability of the forest ecosystems. This study primarily aims to assess the intensity of damage that I. sexdentatus inflicts on Pinus nigra J.F.Arnold stands relative to several parameters: the distance to the nearest forest road, aspect (shady - sunny), slope (0–15% or >15%), and other stand characteristics. In this study, we show how damage by an I. sexdentatus infestation in pure black pine stands varies with distance to forest roads and in situ edaphic factors. We sampled 45 plots (400 m2 each), slope, aspect and distances to the nearest forest road was determined using ArcGIS software and the region’s road network overlays. Results showed that trees located within 100 m from the nearest forest road were the most severely damaged ones. The intensity of I. sexdentatus damage was about 16% in a hectare. Trees that were in 16–20 cm diameter class were damaged more often. I. sexdentatus damage did not show any significant correlation with the slope, aspect or degree of canopy closure.


2019 ◽  
Vol 11 (2) ◽  
pp. 266-276
Author(s):  
Kamal MIRI-HESAR ◽  
Ali DADKHODAIE ◽  
Saideh DOROSTKAR ◽  
Bahram HEIDARI

Drought stress is one of the most significant environmental factors restricting plant production all over the world. In arid and semi-arid regions where drought often causes serious problems, wheat is usually grown as a major crop and faces water stress. In order to study drought tolerance of wheat, an experiment with 34 genotypes including 11 local and commercial cultivars, 17 landraces, and six genotypes from International Maize and Wheat Improvement Center (CIMMYT) was conducted at the experimental station, School of Agriculture, Shiraz University, Iran in 2010-2011 growing season. Three different irrigation regimes (100%, 75% and 50% Field Capacity) were applied and physiological and biochemical traits were measured for which a significant difference was observed in genotypes. Under severe water stress, proline content and enzymes’ activities increased while the relative water content (RWC) and chlorophyll index decreased significantly in all genotypes. Of these indices, superoxide dismutase (SOD) and RWC were able to distinguish tolerant genotypes from sensitives. Moreover, yield index (YI) was useful in detecting tolerant genotypes. The drought susceptibility index (DSI) varied from 0.40 to 1.71 in genotypes. These results indicated that drought-tolerant genotypes could be selected based on high YI, RWC and SOD and low DSI. On the whole, the genotypes 31 (30ESWYT200), 29 (30ESWYT173) and 25 (Akbari) were identified to be tolerant and could be further used in downstream breeding programs for the improvement of wheat tolerance under water limited conditions.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 322
Author(s):  
Yong-Zhong Luo ◽  
Guang Li ◽  
Guijun Yan ◽  
Hui Liu ◽  
Neil C. Turner

Drought is one of the major abiotic stresses affecting the morphological, physiological, and metabolic processes of plants, and hence their growth and production on a global scale. Lucerne (Medicago sativa L.) is one of the most popular pasture species in semi-arid regions and plays a critical role in sustaining agricultural systems in many areas of the world. In order to evaluate the effect of water deficits on the growth and biomass distribution in different tissues of lucerne, plant height, leaf dry weight, leaf number and area, root dry weight, taproot length and lateral root number, and stem dry weight were measured at four stages from the seedling to flowering stages under three water regimes: (i) adequate water supply (minimum soil water content 85% pot capacity (PC)), (ii) moderate water stress (65% PC), and (iii) severe water stress (45% PC), imposed under a rainout shelter. With limited water supply, plant height, leaf number, leaf area and dry weight, taproot length, and total biomass were reduced, while lateral root numbers increased. The number of smaller leaves and root dry weight increased under moderate water stress, whereas severe water stress reduced them. Leaf, stem, and total dry weight were all reduced by the water deficits, but leaf dry weight was reduced the most and root dry weight the least, so there was a redistribution of biomass towards the roots, increasing the root–shoot ratio. These results help us to understand the response of lucerce to water stress and assist in developing a foundation for the sustainable use of lucerne in semi-arid agricultural systems.


Sign in / Sign up

Export Citation Format

Share Document