Shikonin inhibits the proliferation and induces the apoptosis of human HepG2 cells

2010 ◽  
Vol 88 (12) ◽  
pp. 1138-1146 ◽  
Author(s):  
Nie Yingkun ◽  
Zhu Lvsong ◽  
Yu Huimin

This study investigated the potential of shikonin as an anticancer agent against liver cancer and an in vitro human hepatoma cancer model system. The HepG2 cell line was the hepatoma cancer model in the present study. The inhibitory effect of shikonin on the growth of HepG2 cells was measured by MTT assay. To explore the underlying mechanism of cell growth inhibition of shikonin, the cell cycle distribution, DNA fragmentation, mitochondrial membrane potential (Δ[Formula: see text]m) disruption, and expression of Bax and Bcl-2 were measured in HepG2 cells. The activity of shikonin in inducing apoptosis was investigated through the detection of Annexin V signal and CD95 expression by flow cytometry and electron microscopy, respectively. Shikonin inhibited the growth of HepG2 cells in a dose-dependent manner. The IC50 value (inhibiting cell growth by 50%) was 4.30 µg/mL. Shikonin inhibited cell growth in a dose-dependent manner and blocked HepG2 cell cycle progression at the S phase. The changes in mitochondrial morphology, dose-dependently decreased in Δ[Formula: see text]m, were observed in different concentrations of the drug treatment group. Western blot analysis showed that cajanol inhibited Bcl-2 expression and induced Bax expression. Furthermore, we show that shikonin increases Annexin V signal and CD95 (Fas/APO) expression, resulting in apoptotic cell death of HepG2 cells. In addition, lump formation of intranuclear chromatin, pyknosis of cell nucleus, deletion of microvillus, vacuolar degeneration of mitochondria, reduction of rough endoplasmic reticulum, and resolution of free ribosome, etc., associated with apoptosis were discovered by electron microscopy in HepG2 cells after 48 h treatment. Shikonin inhibited HepG2 cells, possibly through the pathway of inducing early apoptosis, and was beneficial for restoring the apoptotic sensitivity of HepG2 cells by CD95, and should therefore be considered as a candidate agent for the prevention or treatment of human hepatoma.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4478-4478 ◽  
Author(s):  
Noriyoshi Iriyama ◽  
Hirotsugu Hino ◽  
Shota Moriya ◽  
Masaki Hiramoto ◽  
Yoshihiro Hatta ◽  
...  

Abstract Background:Multiple myeloma (MM) is a hematologic malignancy characterized by the accumulation of abnormal plasma cells in the bone marrow. D-type cyclins (CCNDs), an important family of cell cycle regulators, are thought to be implicated in multiple myeloma (MM) development because CCNDs are commonly expressed in myeloma cells. CCND is known to positively regulate the cell cycle from G1 to S-phase initiation by binding to cyclin-dependent kinase (CDK) 4/6, resulting in potentiation of myeloma cell growth. These findings suggest a possible role for CDK4/6-targeting therapy in MM, yet the details remain incompletely understood. In this regard, we investigated the biological activity of abemaciclib, a potent, highly selective CDK4/6 inhibitor, in myeloma cell lines, to elucidate the mechanisms underlying the involvement of the CCND-CDK4/6 complex in cell cycle regulation and survival. Methods:The effects of abemaciclib on myeloma cells were investigated using three myeloma cell lines, KMS12-PE (CCND1-positive and CCND2-negative), RPMI8226 (CCND1-negative and CCND2-positive), and IM-9 (both CCND1- and CCND2-positive). Cell growth was assessed by trypan blue exclusion assay. Cell cycle analysis was performed using propidium iodide (PI) and apoptosis was measured using annexin V/PI staining via flow cytometry. Cell cycle regulated proteins, including p21 and p27, and phosphorylated proteins, including STAT1, STAT3, ERK, JNK, p38, and AKT, were evaluated using a phospho-flow method. Autophagy was assessed using CYTO-ID via flow cytometry. PARP cleavage was investigated via western blotting. Clarithromycin, an antibiotic agent belonging to the macrolide class, was used as an autophagy inhibitor. Results:Abemaciclib inhibited myeloma cell growth in a dose-dependent manner in all the cell lines evaluated, with significant differences seen at a concentration of 320 nM. Annexin V/PI staining revealed that 1 μM abemaciclib showed little or no effect on apoptosis, but 3.2 μM abemaciclib induced apparent myeloma cell apoptosis, with an increase in both the early and late apoptotic fractions. Therefore, 1 and 3.2 μM of abemaciclib were used in subsequent experiments for the assessment of cell growth and apoptosis, respectively. Cell cycle analyses revealed that 1 μM abemaciclib increased the fraction of cells in G0/G1 phase and decreased the fraction in S-G2/M phase. Furthermore, this effect was associated with the upregulation of p21 and p27 in the evaluated myeloma cells. PARP cleavage was observed in KMS12-PE cells treated with 3.2 μM abemaciclib, but not 1 μM, suggesting a close connection between the degree of PARP cleavage and apoptosis in myeloma cells. Importantly, abemaciclib induced autophagy in a dose-dependent manner. However, no apparent inhibitory effect on the autophagy-related phosphorylated proteins STAT1 (Y701), STAT3 (Y705), ERK (T202/Y204), JNK (T183/Y185), p38 (T180/Y182), or AKT (Y315) was observed in myeloma cells treated with 3.2 μM abemaciclib. To investigate the role of abemaciclib-induced autophagy on myeloma cell apoptosis, we further assessed the apoptotic effect of 3.2 μM abemaciclib or 50 μg/mL clarithromycin, alone or in combination. Clarithromycin did not induce apoptosis of myeloma cells. Importantly, clarithromycin treatment in combination with abemaciclib attenuated the apoptotic effect of abemaciclib. Discussion & Conclusions: Although the underlying mechanisms conferring the level of CCND expression are known to differ greatly (e.g., CCND translocation, hyperdiploidy, or activation of upstream pathways of CCND transcription), the results of the current study indicate that the CCND-CDK4/6 complex is closely involved in myeloma cell growth and survival regardless of the CCND family member present. In addition, we demonstrate that abemaciclib exerts multiple effects, such as myeloma cell apoptosis, via the PARP pathway or autophagy, as well as cell cycle regulation. Because abemaciclib in combination with clarithromycin inhibits myeloma cell apoptosis, the autophagy induced by abemaciclib is considered to have a critical role in the induction of apoptosis, so-called "autophagic cell death." These results provide novel insights into a possible therapeutic approach using abemaciclib to target CDK4/6 in patients with MM, and offer new possibilities for combination therapy with CDK4/6 inhibitors and autophagy regulators. Disclosures Iriyama: Novartis: Honoraria, Speakers Bureau; Bristol-Myers Squibb: Honoraria, Speakers Bureau. Hatta:Novartis Pharma: Honoraria.


2019 ◽  
Vol 19 (4) ◽  
pp. 557-566 ◽  
Author(s):  
Nerella S. Goud ◽  
Mahammad S. Ghouse ◽  
Jatoth Vishnu ◽  
Jakkula Pranay ◽  
Ravi Alvala ◽  
...  

Background: Human Galectin-1, a protein of lectin family showing affinity towards β-galactosides has emerged as a critical regulator of tumor progression and metastasis, by modulating diverse biological events including homotypic cell aggregation, migration, apoptosis, angiogenesis and immune escape. Therefore, galectin-1 inhibitors might represent novel therapeutic agents for cancer. Methods: A new series of heterocyclic imines linked coumarin-thiazole hybrids (6a-6r) was synthesized and evaluated for its cytotoxic potential against a panel of six human cancer cell lines namely, lung (A549), prostate (DU-145), breast (MCF-7 & MDA-MB-231), colon (HCT-15 & HT-29) using MTT assay. Characteristic apoptotic assays like DAPI staining, cell cycle, annexin V and Mitochondrial membrane potential studies were performed for the most active compound. Furthermore, Gal-1 inhibition was confirmed by ELISA and fluorescence spectroscopy. Results: Among all, compound 6g 3-(2-(2-(pyridin-2-ylmethylene) hydrazineyl) thiazol-4-yl)-2H-chromen-2- one exhibited promising growth inhibition against HCT-15 colorectal cancer cells with an IC50 value of 1.28 ± 0.14 µM. The characteristic apoptotic morphological features like chromatin condensation, membrane blebbing and apoptotic body formation were clearly observed with compound 6g on HCT-15 cells using DAPI staining studies. Further, annexin V-FITC/PI assay confirmed effective early apoptosis induction by treatment with compound 6g. Loss of mitochondrial membrane potential and enhanced ROS generation were confirmed with JC-1 and DCFDA staining method, respectively by treatment with compound 6g, suggesting a possible mechanism for inducing apoptosis. Moreover, flow cytometric analysis revealed that compound 6g blocked G0/G1 phase of the cell cycle in a dose-dependent manner. Compound 6g effectively reduced the levels of Gal-1 protein in a dose-dependent manner. The binding constant (Ka) of 6g with Gal-1 was calculated from the intercept value which was observed as 1.9 x 107 M-1 by Fluorescence spectroscopy. Molecular docking studies showed strong interactions of compound 6g with Gal-1 protein. Conclusion: Our studies demonstrate the anticancer potential and Gal-1 inhibition of heterocyclic imines linked coumarin-thiazole hybrids.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2178
Author(s):  
Fabio Morandi ◽  
Veronica Bensa ◽  
Enzo Calarco ◽  
Fabio Pastorino ◽  
Patrizia Perri ◽  
...  

Neuroblastoma (NB) is the most common extra-cranial solid tumor of pediatric age. The prognosis for high-risk NB patients remains poor, and new treatment strategies are desirable. The olive leaf extract (OLE) is constituted by phenolic compounds, whose health beneficial effects were reported. Here, the anti-tumor effects of OLE were investigated in vitro on a panel of NB cell lines in terms of (i) reduction of cell viability; (ii) inhibition of cell proliferation through cell cycle arrest; (iii) induction of apoptosis; and (iv) inhibition of cell migration. Furthermore, cytotoxicity experiments, by combining OLE with the chemotherapeutic topotecan, were also performed. OLE reduced the cell viability of NB cells in a time- and dose-dependent manner in 2D and 3D models. NB cells exposed to OLE underwent inhibition of cell proliferation, which was characterized by an arrest of the cell cycle progression in G0/G1 phase and by the accumulation of cells in the sub-G0 phase, which is peculiar of apoptotic death. This was confirmed by a dose-dependent increase of Annexin V+ cells (peculiar of apoptosis) and upregulation of caspases 3 and 7 protein levels. Moreover, OLE inhibited the migration of NB cells. Finally, the anti-tumor efficacy of the chemotherapeutic topotecan, in terms of cell viability reduction, was greatly enhanced by its combination with OLE. In conclusion, OLE has anti-tumor activity against NB by inhibiting cell proliferation and migration and by inducing apoptosis.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2762-2762
Author(s):  
Ju Young Kim ◽  
Hyun Ki Park ◽  
Jin Sun Yoon ◽  
Eun Shil Kim ◽  
Kwang Sung Ahn ◽  
...  

Abstract Advanced glycation end products (AGEs) are products of non-enzymatic glycation/oxidation of proteins/lipids that accumulate slowly during natural aging and at a much accelerated rate in a variety of disorders such as diabetes, renal failure, and Alzheimer’s disease. AGE modifications do not only change the physicochemical properties of the afflicted molecules, but also induce cellular signaling, activation of transcription factors and subsequent gene expression in vitro and in vivo. Most of the biologic activities associated with AGEs have been transduced by receptor for AGE (RAGE). Recently, AGEs are known to be in association with diverse cancers in terms of cellular proliferation and metastasis. However, little is known about the role of AGEs in acute myelogenous leukemia (AML). Here we examined the effects of the AGEs-RAGE interaction on the cell proliferation and intracellular signaling of AGEs in human leukemia cell lines. Expression of RAGE was observed in 8 AML cell lines examined, and up-regulated by treatment of AGE. AGE induced the proliferation of AML cell lines, HL60 and HEL, in a dose-dependent manner. Treatment with 5 μM of antisense S-ODN for RAGE did effectively inhibit cell growth of HEL cells. Exposure of HL60 and HEL with AGE induced a significant increase in the numbers of cells in S phase of cell cycle in a dose-dependent manner. AGE enhanced the expression of cell cycle regulatory proteins such as cyclin-dependent kinase (CDK) 2/4/6, cyclin D1/E/B in a dose- and a time-dependent manner. In addition, the protein levels of the cyclin-dependent kinase inhibitor (CDKI), p21 and p27, were decreased by 24 hr exposure of AGE from 10 to 200 μg/ml in HEL. Furthermore, treatment of HEL with 200 μg/ml of AGE triggered activation of mitogen-activated protein (MAP) kinases, Erk, Akt, and p38, pathways and in nuclear translocation of transcription factors NF-kB. These results indicated that AGE induced the cell growth of human AML cells, HL60 and HEL, via augmentation of cell cycle and activation of MAPK kinase pathways. Up-regulation of RAGE by exposure of AGE suggested that cellular proliferation of AML cells might be mediated in autocrine fashion.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3367-3367 ◽  
Author(s):  
Weiguo Zhang ◽  
Marina Konopleva ◽  
Teresa McQueen ◽  
Jorje Cortes ◽  
James McCubrey ◽  
...  

Abstract We have previously demonstrated constitutive activation of MAPK signaling in 70% of primary AML samples (Millela et al, JCI108:851–859, 2001), suggesting that upstream kinases (Raf and MEK) may play a role in the leukemic transformation of myeloid cells. BAY 43-9006 is a small molecule Raf kinase inhibitor that has demonstrated potent anti-tumor activity against solid human tumors in xenograft models. In this study, we tested the hypothesis that BAY 43-9006 inhibits leukemia cell growth and/or induces apoptosis by suppressing the activity of the MAPK pathway. In the in vitro kinase assay, BAY 43-9006 inhibited both Raf-1 and B-Raf-mediated MEK1 phosphorylation in a dose-dependent manner, with Raf-1 kinase being more sensitive to the inhibitory effects of BAY 43-9006 (IC50Raf-1, 1.37 μM vs. IC50B-Raf, 4.64 μM). BAY 43-9006 suppressed MEK1/2 and ERK phosphorylation in the AML cell lines OCI-AML3, HL-60, U937 and KG-1 in a dose-dependent manner after 24 hr treatment. Unexpectedly, BAY 43-9006 also inhibited AKT phosphorylation on Ser473 (after 4.5 hrs). BAY 43-9006 inhibited growth of AML cells in a dose- and time-dependent manner. The 50% inhibitory concentration (IC50) of BAY 43-9006 was 0.39, 1.14, 2.86 and 2.80 μM, respectively in OCI-AML3, HL-60, U937 and KG-1 cells after 72 hrs. This growth-inhibitory effect was mediated by a dose-dependent induction of cell cycle arrest in G1 mediated by the down-regulation of the cell cycle-related proteins cyclin E, cdk2 and cdc2, followed by induction of apoptosis after 72 hrs. In primary AML patient samples, BAY 43-9006 not only inhibited cell growth and induced apoptosis after 48–72 hrs in vitro, but also preferentially inhibited colony formation of AML progenitor cells compared to normal bone marrow cells [IC50: 2.33 μM vs. 9.34μM (CFU-GM), 5.69 μM (Erythroid) and 3.75 μM (Mixed), respectively]. Time-course analyses demonstrated that BAY 43-9006 suppressed phosphorylation of the pro-apoptotic protein Bim (at 4.5 hrs), caused loss of the mitochondrial membrane potential and cytochrome c release (at 6 hrs) followed by cleavage of caspases-3 and -9 but not of caspase-8, suggesting primary involvement of the intrinsic mitochondrial pathway. Furthermore, the pro-apoptotic proteins Bim and Bax were up-regulated after 48 hrs of BAY 43-9006 treatment, and the level of the inhibitor-of-apoptosis protein Survivin was down-regulated after 48 hrs. In summary, our data demonstrates that BAY 43-9006 inhibits Raf-MEK-ERK signaling and induces apoptosis in AML via Bim de-phosphorylation and activation of the intrinsic apoptotic pathway. The potential of BAY 43-9006 in the therapy of AML patients will be tested in a Phase I clinical trial.


2001 ◽  
Vol 29 (01) ◽  
pp. 161-172 ◽  
Author(s):  
Lii-Tzu Wu ◽  
Jing-Gung Chung ◽  
Jung-Chou Chen ◽  
Wei Tsauer

The inhibition of arylamine N-acetyltransferase (NAT) activity by norcantharidin (NCTD), the demethylated form of cantharidin, in human hepatocellular carcinoma HepG2 cells was investigated. By using high performance liquid chromatography, NAT activity on acetylation of 2-aminofluorene (AF) and p-aminobenzoic acid (PABA) were examined. Two assay system were performed, one with cellular cytosols, the other with intact HepG2 cell suspensions. The NAT activity in HepG2 cell line was inhibited by norcantharidin in a dose-dependent manner in both types of examined systems: i.e. the greater the concentration of norcantharidin in the reaction, the greater the inhibition of NAT activities. This report is the first to show that norcantharidin has an inhibitory effect on NAT activity in HepG2 cell.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yong’an Jiang ◽  
Jiayu Liu ◽  
Wangwang Hong ◽  
Xiaowei Fei ◽  
Ru’en Liu

Purpose. Arctigenin (ARG) is a natural lignan compound extracted from Arctium lappa and has displayed anticancer function and therapeutic effect in a variety of cancers. Arctigenin is mainly from Arctium lappa extract. It has been shown to induce autophagy in various cancers. However, as for whether arctigenin induces autophagy in gliomas or not, the specific mechanism is still worth exploring. Methods. Using CCK8, the monoclonal experiment was made to detect the proliferation ability. The scratch experiment and the transwell experiment were applied to the migration and invasion ability. PI/RNase and FITC-conjugated anti-annexin V were used to detect the cell cycle and apoptosis. Western blotting was used to determine the specified protein level, and constructed LC3B-GFP plasmid was used for analysis of autophagy.Results. Our research showed that ARG inhibited the growth and proliferation and invasion and migration of glioma cells in a dose-dependent manner (U87MG and T98G) and arrested the cell cycle and induced apoptosis. Interestingly, ARG induced autophagy in a dose-dependent manner. We applied Western blotting to measure the increase in the key autophagy protein LC3B, as well as some other autophagy-related proteins (increase in Beclin-1 and decrease in P62). In order to further explore the mechanism that ARG passed initiating autophagy to inhibit cell growth, we further found by Western blotting that AKT and mTOR phosphorylation proteins (P-AKT, P-mTOR) were reduced after ARG treatment, and we used AKT agonists to rescue, and the phosphorylated proteins of AKT and mTOR increased, and we found that the autophagy-related proteins were also reversed. And interestingly, the protein of apoptosis was also reversed along with autophagy. Conclusions. We thought ARG inhibited the proliferation of glioma cells by inducing autophagy and apoptosis through the AKT/mTOR pathway.


2013 ◽  
Vol 41 (03) ◽  
pp. 665-682 ◽  
Author(s):  
Sansan Chen ◽  
Xinming Qu ◽  
Pei Wan ◽  
Qing Wen Li ◽  
Ziyi Wang ◽  
...  

Norcantharidin (NCTD) is currently used for anticancer therapy but the exact mechanism of action remains unknown. Pre-replicative complexes (pre-RCs) are essential for cell DNA replication and highly related to malignant proliferation. Here, we examined the inhibitory effect of NCTD on pre-RC components in HepG2 cells. We showed that NCTD induced degradation of Cdc6 and Mcm2 in a dose-dependent manner. Under 100 μM NCTD concentration, about 70% of Cdc6 and 50% of Mcm2 were degraded. In addition, the nuclear translocation of Mcm6 was inhibited by NCTD. Further studies aiming at G1 synchronous cells showed that, NCTD reduced the chromatin-bound Cdc6, Mcm2 and Mcm6. Moreover, the cells were blocked from entering the S phase and accumulated at the G1 phase when released synchronously into the cell cycle. Consistently, the DNA replication was inhibited by NCTD. Finally, the combination NCTD with Cdc6 depletion lead to more severe cytotoxicity (88%) than NCTD (52%) and Cdc6 depletion (39%) alone. A synergic cytotoxicity was observed between Cdc6 depletion and NCTD. In conclusion, our results demonstrate that NCTD inhibits pre-RC assembly; subsequently blocks the G1 to S transition; and inhibits DNA replication in HepG2 cells. Pre-RCs are an intriguing target for cancer therapy, which merits further investigations for anticancer development.


Author(s):  
Sathiavani Arikrishnan ◽  
Jian Sheng Loh ◽  
Xian Wei Teo ◽  
Faris bin Norizan ◽  
May Lee Low ◽  
...  

Background: The lack of specificity, severe side effects, and development of drug resistance have largely limited the use of platinum-based compounds in cancer treatment. Therefore, copper complexes have emerged as potential alternatives to platinum-based compounds. Objective: Ternary copper (II) complex incorporated with 1-10-phenanthroline and L-tyrosine was investigated for its anti-cancer effects in HT-29 colorectal cancer cells. Methods: Cytotoxic effects of ternary copper (II) complex in HT-29 cells were evaluated using MTT assay, Real-Time Cell Analysis (RTCA), and lactate dehydrogenase (LDH) assay. Cell cycle analysis was performed using flow cytometry. Apoptosis induction was studied by Annexin V-FITC/propidium iodide (PI) staining and mitochondrial membrane potential analysis (JC-10 staining) using flow cytometry. Intracellular reactive oxygen species (ROS) were detected by DCFH-DA assay. The expression of proteins involved in the apoptotic signalling pathway (p53, caspases, and PARP-1) was evaluated by western blot analysis. Results: Ternary copper (II) complex reduced the cell viability of HT-29 cells in a time- and dose-dependent manner, with IC50 of 2.4 ± 0.4 and 0.8 ± 0.04 µM at 24 and 48 hours, respectively. Cell cycle analysis demonstrated induction of S-phase cell cycle arrest. Morphological evaluation and Annexin V-FITC/PI flow cytometry analysis confirmed induction of apoptosis that was further supported by cleavage and activation of caspase-8, caspase-9, caspase-3, and PARP-1. Mutant p53 was also downregulated in a dose-dependent manner. No LDH release, mitochondrial membrane potential disruption, and ROS production were observed. Conclusion: Ternary copper (II) complex holds great potential to be developed for colorectal cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document