scholarly journals Optimization of protein extraction and ELISA immunodetection from protein-based paint models with mesoporous silica nanoparticles and MCM41

2021 ◽  
Vol 136 (6) ◽  
Author(s):  
Aditya Sandeep Goyal ◽  
Cátia Salvador ◽  
Carole Mathe ◽  
António Candeias ◽  
Ana Teresa Caldeira

AbstractProtein-based biological materials such as albumin, casein and collagen are found in various cultural heritage (CH) artefacts. This study focuses on the study of protein binders from easel paintings media. Proteins have complex structures which are difficult to identify with non-invasive spectroscopic methods (FT-IR, Raman, UV). Immunoassays such as ELISA determine the protein’s source of origin which is necessary for art objects. To increase the detection and identification of proteins by immunoassays, the efficiency of micro-extraction of proteins from heritage materials is a crucial step. Extractions mediated by cycles of orbital agitation and ultrasonic radiation give the possibility to extract proteins from easel painting sample. In this work, protein-based paint models coupled with silica nanoparticles were used for micro-extraction. Nanoparticles possess high surface-to-volume ratios that can attach bioactive molecules such as proteins and increase the total protein recovered from microsamples. Protein extracts were quantified with Bradford Assay in the presence of Coomassie blue. The protein recovery results were statistically computed, and the SPSS analysis shows significant (p < 0.05) increase in protein recovery, above 1.3 times for NPSiO2 and above 1.6 times for MCM-41. The statistical data shows evidence that silica nanoparticles intensify the total protein recovered from paint microsamples. Finally, ELISA was realized on the protein extracts to verify and compare the immunodetection of protein from the paint models with and without the use of silica nanoparticles.

2020 ◽  
Vol 20 (11) ◽  
pp. 1001-1016
Author(s):  
Sandra Ramírez-Rave ◽  
María Josefa Bernad-Bernad ◽  
Jesús Gracia-Mora ◽  
Anatoly K. Yatsimirsky

Hybrid materials based on Mesoporous Silica Nanoparticles (MSN) have attracted plentiful attention due to the versatility of their chemistry, and the field of Drug Delivery Systems (DDS) is not an exception. MSN present desirable biocompatibility, high surface area values, and a well-studied surface reactivity for tailoring a vast diversity of chemical moieties. Particularly important for DDS applications is the use of external stimuli for drug release. In this context, light is an exceptional alternative due to its high degree of spatiotemporal precision and non-invasive character, and a large number of promising DDS based on photoswitchable properties of azobenzenes have been recently reported. This review covers the recent advances in design of DDS using light as an external stimulus mostly based on literature published within last years with an emphasis on usually overlooked underlying chemistry, photophysical properties, and supramolecular complexation of azobenzenes.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3337
Author(s):  
Sara Hooshmand ◽  
Sahar Mollazadeh ◽  
Negar Akrami ◽  
Mehrnoosh Ghanad ◽  
Ahmed El-Fiqi ◽  
...  

Exploring new therapies for managing skin wounds is under progress and, in this regard, mesoporous silica nanoparticles (MSNs) and mesoporous bioactive glasses (MBGs) offer great opportunities in treating acute, chronic, and malignant wounds. In general, therapeutic effectiveness of both MSNs and MBGs in different formulations (fine powder, fibers, composites etc.) has been proved over all the four stages of normal wound healing including hemostasis, inflammation, proliferation, and remodeling. The main merits of these porous substances can be summarized as their excellent biocompatibility and the ability of loading and delivering a wide range of both hydrophobic and hydrophilic bioactive molecules and chemicals. In addition, doping with inorganic elements (e.g., Cu, Ga, and Ta) into MSNs and MBGs structure is a feasible and practical approach to prepare customized materials for improved skin regeneration. Nowadays, MSNs and MBGs could be utilized in the concept of targeted therapy of skin malignancies (e.g., melanoma) by grafting of specific ligands. Since potential effects of various parameters including the chemical composition, particle size/morphology, textural properties, and surface chemistry should be comprehensively determined via cellular in vitro and in vivo assays, it seems still too early to draw a conclusion on ultimate efficacy of MSNs and MBGs in skin regeneration. In this regard, there are some concerns over the final fate of MSNs and MBGs in the wound site plus optimal dosages for achieving the best outcomes that deserve careful investigation in the future.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1388
Author(s):  
Marco Guerritore ◽  
Rachele Castaldo ◽  
Brigida Silvestri ◽  
Roberto Avolio ◽  
Mariacristina Cocca ◽  
...  

The development of new styrene-based hyper-crosslinked nanocomposites (HCLN) containing mesoporous silica nanoparticles (MSN) is reported here as a new strategy to obtain functional high surface area materials with an enhanced hydrophilic character. The HCLN composition, morphology and porous structure were analyzed using a multi-technique approach. The HCLN displayed a high surface area (above 1600 m2/g) and higher microporosity than the corresponding hyper-crosslinked neat resin. The enhanced adsorption properties of the HCLN towards polar organic dyes was demonstrated through the adsorption of a reactive dye, Remazol Brilliant Blue R (RB). In particular, the HCLN containing 5phr MSN showed the highest adsorption capacity of RB.


2016 ◽  
Vol 5 (2) ◽  
Author(s):  
Mahdi Karimi ◽  
Hamed Mirshekari ◽  
Masoumeh Aliakbari ◽  
Parham Sahandi-Zangabad ◽  
Michael R. Hamblin

AbstractStimuli-responsive controlled-release nanocarriers are promising vehicles for delivery of bioactive molecules that can minimize side effects and maximize efficiency. The release of the drug occurs when the nanocarrier is triggered by an internal or external stimulus. Mesoporous silica nanoparticles (MSN) can have drugs and bioactive cargos loaded into the high-capacity pores, and their release can be triggered by activation of a variety of stimulus-responsive molecular “gatekeepers” or “nanovalves.” In this mini-review, we discuss the basic concepts of MSN in targeted drug-release systems and cover different stimulus-responsive gatekeepers. Internal stimuli include redox, enzymes, and pH, while external stimuli include light, ultrasound, and magnetic fields, and temperature can either be internal or external.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 150
Author(s):  
Siti Norain Harun ◽  
Haslina Ahmad ◽  
Hong Ngee Lim ◽  
Suet Lin Chia ◽  
Martin R. Gill

The ruthenium polypyridyl complex [Ru(dppz)2PIP]2+ (dppz: dipyridophenazine, PIP: (2-(phenyl)-imidazo[4,5-f ][1,10]phenanthroline), or Ru-PIP, is a potential anticancer drug that acts by inhibiting DNA replication. Due to the poor dissolution of Ru-PIP in aqueous media, a drug delivery agent would be a useful approach to overcome its limited bioavailability. Mesoporous silica nanoparticles (MSNs) were synthesized via a co-condensation method by using a phenanthrolinium salt with a 16 carbon length chain (Phen-C16) as the template. Optimization of the synthesis conditions by Box–Behnken design (BBD) generated MSNs with high surface area response at 833.9 m2g−1. Ru-PIP was effectively entrapped in MSNs at 18.84%. Drug release profile analysis showed that Ru-PIP is gradually released, with a cumulative release percentage of approximately 50% at 72 h. The release kinetic profile implied that Ru-PIP was released from MSN by diffusion. The in vitro cytotoxicity of Ru-PIP, both free and MSN-encapsulated, was studied in Hela, A549, and T24 cancer cell lines. While treatment of Ru-PIP alone is moderately cytotoxic, encapsulated Ru-PIP exerted significant cytotoxicity upon all the cell lines, with half maximal inhibitory concentration (IC50) values determined by MTT (([3-(4,5-dimethylthiazol-2-yl)-2,5-dephenyltetrazolium bromide]) assay at 48 h exposure substantially decreasing from >30 µM to <10 µM as a result of MSN encapsulation. The mechanistic potential of cytotoxicity on cell cycle distribution showed an increase in G1/S phase populations in all three cell lines. The findings indicate that MSN is an ideal drug delivery agent, as it is able to sustainably release Ru-PIP by diffusion in a prolonged treatment period.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 152
Author(s):  
Eleen Dayana Mohamed Isa ◽  
Haslina Ahmad ◽  
Mohd Basyaruddin Abdul Rahman ◽  
Martin R. Gill

Cancer treatment and therapy have made significant leaps and bounds in these past decades. However, there are still cases where surgical removal is impossible, metastases are challenging, and chemotherapy and radiotherapy pose severe side effects. Therefore, a need to find more effective and specific treatments still exists. One way is through the utilization of drug delivery agents (DDA) based on nanomaterials. In 2001, mesoporous silica nanoparticles (MSNs) were first used as DDA and have gained considerable attention in this field. The popularity of MSNs is due to their unique properties such as tunable particle and pore size, high surface area and pore volume, easy functionalization and surface modification, high stability and their capability to efficiently entrap cargo molecules. This review describes the latest advancement of MSNs as DDA for cancer treatment. We focus on the fabrication of MSNs, the challenges in DDA development and how MSNs address the problems through the development of smart DDA using MSNs. Besides that, MSNs have also been applied as a multifunctional DDA where they can serve in both the diagnostic and treatment of cancer. Overall, we argue MSNs provide a bright future for both the diagnosis and treatment of cancer.


2021 ◽  
Vol 10 (4) ◽  
pp. 3148-3153
Author(s):  
Aachal Anil Gosavi

The aim of the present work was to design and synthesize of mesoporous silica nanoparticles as topical hydrogel formulation for inclusion of poorly water soluble antifungal drug like Luliconazole as a drug delivery platform. The SBA-15 was prepared to evaluate its application as a carrier for Luliconazole drug delivery. Its molecular size was suitable for incorporation in to the mesoporous of the SBA-15 materials. The SBA-15 was characterized by FTIR, UV analysis, Particle size, Transmission electron microscopy. The Synthesized Mesoporous silica i.e. SBA-15 was of mean particle size of 15 nm and specific area 283.763m2/g respectively. The results revealed that prepared mesoporous silica have small particle size, high surface area, and enhanced drug dissolution rate. The results obtained showed that Luliconazole was loaded with great efficiency into the SBA-15 which leads to enhanced diffusion of drug. Luliconazole hydrogel formulations improved medication permeation across the skin appropriate polymer was used to produce the formulation (Carbopol 934p and HPMC). The physiochemical parameters of all the established luliconazole formulations were assessed, including gel appearance, pH, viscosity, spreadability, globule size, Zeta potential, and drug content. Many of the above parameters yielded positive outcomes but F1 and F3 batch results was were unacceptable ranges. It can be assumed that the formulation F1 and F3 resulted in improved spreadability, stability, and homogeneity, as well as a stronger drug release analysis.


2021 ◽  
Vol 18 ◽  
Author(s):  
Ahmed Abu-Dief ◽  
Mosa Alsehli ◽  
Abdullah Al-Enizi ◽  
Ayman Nafady

: Nanotechnology provides the means to design and fabricate delivery vehicles capable of overcoming physiologically imposed obstacles and undesirable side effects of systemic drug delivery. This protocol allows maximal targeting effectiveness and therefore enhances therapeutic efficiency. In recent years, mesoporous silica nanoparticles (MSNPs) have sparked interest in the nanomedicine research community, particularly for their promising applications in cancer treatment. The intrinsic physio-chemical stability, facile functionalization, high surface area, low toxicity, and great loading capacity for a wide range of chemotherapeutic agents make MSNPs very appealing candidates for controllable drug delivery systems. Importantly, the peculiar nanostructures of MSNPs enabled them to serve as an effective drug, gene, protein, and antigen delivery vehicle for a variety of therapeutic regimens. For these reasons, in this review article, we underscore the recent progress in the design and synthesis of MSNPs and the parameters influencing their characteristic features and activities. In addition, the process of absorption, dissemination, and secretion by injection or oral management of MSNPs are also discussed, as they are key directions for the potential utilization of MSNPs. Factors influencing the in vivo fate of MSNPs will also be highlighted, with the main focus on particle size, morphology, porosity, surface functionality, and oxidation. Given that combining other functional materials with MSNPs may increase their biological compatibility, monitor drug discharge, or improve absorption by tumor cells coated MSNPs; these aspects are also covered and discussed herein.


2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
Yongxiang Zhang ◽  
Xinmin Liu ◽  
Yizhong Lu ◽  
Jincai Wang ◽  
Tingfang Dong ◽  
...  

In this study, heparinized multifunctional mesoporous silica nanoparticles were successfully synthesized and characterized. The new material not only maintains intrinsic functions of bare magnetic and fluorescent mesoporous silica materials such as targeting, imaging, and sustained release of drugs, but also generates several novel activities such as the enhancement of biocompatibility, selective loading drugs, and dual loading of anticancer drug and bFGF, rendering it a promising candidate to be used as a multifunctional carrier. The strategy of combination of multifunctional mesoporous silica materials with bioactive molecules could be a new effective approach to improve their capabilities in the drug delivery.


Sign in / Sign up

Export Citation Format

Share Document