scholarly journals Progress in Mesoporous Silica Nanoparticles as Drug Delivery Agents for Cancer Treatment

Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 152
Author(s):  
Eleen Dayana Mohamed Isa ◽  
Haslina Ahmad ◽  
Mohd Basyaruddin Abdul Rahman ◽  
Martin R. Gill

Cancer treatment and therapy have made significant leaps and bounds in these past decades. However, there are still cases where surgical removal is impossible, metastases are challenging, and chemotherapy and radiotherapy pose severe side effects. Therefore, a need to find more effective and specific treatments still exists. One way is through the utilization of drug delivery agents (DDA) based on nanomaterials. In 2001, mesoporous silica nanoparticles (MSNs) were first used as DDA and have gained considerable attention in this field. The popularity of MSNs is due to their unique properties such as tunable particle and pore size, high surface area and pore volume, easy functionalization and surface modification, high stability and their capability to efficiently entrap cargo molecules. This review describes the latest advancement of MSNs as DDA for cancer treatment. We focus on the fabrication of MSNs, the challenges in DDA development and how MSNs address the problems through the development of smart DDA using MSNs. Besides that, MSNs have also been applied as a multifunctional DDA where they can serve in both the diagnostic and treatment of cancer. Overall, we argue MSNs provide a bright future for both the diagnosis and treatment of cancer.

2021 ◽  
Vol 10 (4) ◽  
pp. 3148-3153
Author(s):  
Aachal Anil Gosavi

The aim of the present work was to design and synthesize of mesoporous silica nanoparticles as topical hydrogel formulation for inclusion of poorly water soluble antifungal drug like Luliconazole as a drug delivery platform. The SBA-15 was prepared to evaluate its application as a carrier for Luliconazole drug delivery. Its molecular size was suitable for incorporation in to the mesoporous of the SBA-15 materials. The SBA-15 was characterized by FTIR, UV analysis, Particle size, Transmission electron microscopy. The Synthesized Mesoporous silica i.e. SBA-15 was of mean particle size of 15 nm and specific area 283.763m2/g respectively. The results revealed that prepared mesoporous silica have small particle size, high surface area, and enhanced drug dissolution rate. The results obtained showed that Luliconazole was loaded with great efficiency into the SBA-15 which leads to enhanced diffusion of drug. Luliconazole hydrogel formulations improved medication permeation across the skin appropriate polymer was used to produce the formulation (Carbopol 934p and HPMC). The physiochemical parameters of all the established luliconazole formulations were assessed, including gel appearance, pH, viscosity, spreadability, globule size, Zeta potential, and drug content. Many of the above parameters yielded positive outcomes but F1 and F3 batch results was were unacceptable ranges. It can be assumed that the formulation F1 and F3 resulted in improved spreadability, stability, and homogeneity, as well as a stronger drug release analysis.


2020 ◽  
Vol 20 (11) ◽  
pp. 1001-1016
Author(s):  
Sandra Ramírez-Rave ◽  
María Josefa Bernad-Bernad ◽  
Jesús Gracia-Mora ◽  
Anatoly K. Yatsimirsky

Hybrid materials based on Mesoporous Silica Nanoparticles (MSN) have attracted plentiful attention due to the versatility of their chemistry, and the field of Drug Delivery Systems (DDS) is not an exception. MSN present desirable biocompatibility, high surface area values, and a well-studied surface reactivity for tailoring a vast diversity of chemical moieties. Particularly important for DDS applications is the use of external stimuli for drug release. In this context, light is an exceptional alternative due to its high degree of spatiotemporal precision and non-invasive character, and a large number of promising DDS based on photoswitchable properties of azobenzenes have been recently reported. This review covers the recent advances in design of DDS using light as an external stimulus mostly based on literature published within last years with an emphasis on usually overlooked underlying chemistry, photophysical properties, and supramolecular complexation of azobenzenes.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1388
Author(s):  
Marco Guerritore ◽  
Rachele Castaldo ◽  
Brigida Silvestri ◽  
Roberto Avolio ◽  
Mariacristina Cocca ◽  
...  

The development of new styrene-based hyper-crosslinked nanocomposites (HCLN) containing mesoporous silica nanoparticles (MSN) is reported here as a new strategy to obtain functional high surface area materials with an enhanced hydrophilic character. The HCLN composition, morphology and porous structure were analyzed using a multi-technique approach. The HCLN displayed a high surface area (above 1600 m2/g) and higher microporosity than the corresponding hyper-crosslinked neat resin. The enhanced adsorption properties of the HCLN towards polar organic dyes was demonstrated through the adsorption of a reactive dye, Remazol Brilliant Blue R (RB). In particular, the HCLN containing 5phr MSN showed the highest adsorption capacity of RB.


2019 ◽  
Vol 26 (31) ◽  
pp. 5745-5763 ◽  
Author(s):  
Fahima Dilnawaz

Background: Cancer is a widespread disease and has a high mortality rate. Popular conventional treatment encompasses chemotherapy, radiation and surgical resection. However, these treatments impart lots of toxicity problems to the patients mostly due to their non-selectiveness nature, which invokes drug resistances and severe side-effects. Objectives: In this regard, nanotechnology has claimed to be a smart technology that provides the system with the ability to target drugs to the specific sites. With the use of nanotechnology, various nanomaterials that are widely used as a drug delivery vehicle are created for biomedical applications. Amongst variously diversified nanovehicles, mesoporous silica nanoparticles (MSNs) have attracted enormous attention due to their structural characteristics, great surface areas, tunable pore diameters, good thermal and chemical stability, excellent biocompatibility along with ease of surface modification. Furthermore, the drug release from MSNs can be tailored through various stimuli response gatekeeper systems. The ordered structure of MSNs is extremely suitable for loading of the high amount of drug molecules with controlled delivery for targeting the cancer tissues via enhanced permeability and retention effect or further with surface modification, it can also be actively targeted by various ligands. Methods: The review article emphases the common synthetic methods and current advancement of MSNs usages for stimuli response drug delivery, immunotherapy as well as the theranostic ability for cancer. Conclusion: Although MSNs are becoming the promising tool for more efficient and safer cancer therapy, however, additional translational studies are required to explore its multifunctional ability in a clinical setting.


Drug Delivery ◽  
2013 ◽  
Vol 21 (3) ◽  
pp. 164-172 ◽  
Author(s):  
Ebrahim Ahmadi ◽  
Nematollah Dehghannejad ◽  
Samaneh Hashemikia ◽  
Merajaddin Ghasemnejad ◽  
Hashem Tabebordbar

Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 150
Author(s):  
Siti Norain Harun ◽  
Haslina Ahmad ◽  
Hong Ngee Lim ◽  
Suet Lin Chia ◽  
Martin R. Gill

The ruthenium polypyridyl complex [Ru(dppz)2PIP]2+ (dppz: dipyridophenazine, PIP: (2-(phenyl)-imidazo[4,5-f ][1,10]phenanthroline), or Ru-PIP, is a potential anticancer drug that acts by inhibiting DNA replication. Due to the poor dissolution of Ru-PIP in aqueous media, a drug delivery agent would be a useful approach to overcome its limited bioavailability. Mesoporous silica nanoparticles (MSNs) were synthesized via a co-condensation method by using a phenanthrolinium salt with a 16 carbon length chain (Phen-C16) as the template. Optimization of the synthesis conditions by Box–Behnken design (BBD) generated MSNs with high surface area response at 833.9 m2g−1. Ru-PIP was effectively entrapped in MSNs at 18.84%. Drug release profile analysis showed that Ru-PIP is gradually released, with a cumulative release percentage of approximately 50% at 72 h. The release kinetic profile implied that Ru-PIP was released from MSN by diffusion. The in vitro cytotoxicity of Ru-PIP, both free and MSN-encapsulated, was studied in Hela, A549, and T24 cancer cell lines. While treatment of Ru-PIP alone is moderately cytotoxic, encapsulated Ru-PIP exerted significant cytotoxicity upon all the cell lines, with half maximal inhibitory concentration (IC50) values determined by MTT (([3-(4,5-dimethylthiazol-2-yl)-2,5-dephenyltetrazolium bromide]) assay at 48 h exposure substantially decreasing from >30 µM to <10 µM as a result of MSN encapsulation. The mechanistic potential of cytotoxicity on cell cycle distribution showed an increase in G1/S phase populations in all three cell lines. The findings indicate that MSN is an ideal drug delivery agent, as it is able to sustainably release Ru-PIP by diffusion in a prolonged treatment period.


2021 ◽  
Vol 18 ◽  
Author(s):  
Ahmed Abu-Dief ◽  
Mosa Alsehli ◽  
Abdullah Al-Enizi ◽  
Ayman Nafady

: Nanotechnology provides the means to design and fabricate delivery vehicles capable of overcoming physiologically imposed obstacles and undesirable side effects of systemic drug delivery. This protocol allows maximal targeting effectiveness and therefore enhances therapeutic efficiency. In recent years, mesoporous silica nanoparticles (MSNPs) have sparked interest in the nanomedicine research community, particularly for their promising applications in cancer treatment. The intrinsic physio-chemical stability, facile functionalization, high surface area, low toxicity, and great loading capacity for a wide range of chemotherapeutic agents make MSNPs very appealing candidates for controllable drug delivery systems. Importantly, the peculiar nanostructures of MSNPs enabled them to serve as an effective drug, gene, protein, and antigen delivery vehicle for a variety of therapeutic regimens. For these reasons, in this review article, we underscore the recent progress in the design and synthesis of MSNPs and the parameters influencing their characteristic features and activities. In addition, the process of absorption, dissemination, and secretion by injection or oral management of MSNPs are also discussed, as they are key directions for the potential utilization of MSNPs. Factors influencing the in vivo fate of MSNPs will also be highlighted, with the main focus on particle size, morphology, porosity, surface functionality, and oxidation. Given that combining other functional materials with MSNPs may increase their biological compatibility, monitor drug discharge, or improve absorption by tumor cells coated MSNPs; these aspects are also covered and discussed herein.


Sign in / Sign up

Export Citation Format

Share Document